Browse > Article
http://dx.doi.org/10.4014/jmb.1412.12026

Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure  

Yang, Li-Bo (Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University)
Dai, Xiao-Meng (Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University)
Zheng, Zhi-Yong (Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University)
Zhu, Li (Jiangsu Rayguang Biotechnology Co., Ltd.)
Zhan, Xiao-Bei (Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University)
Lin, Chi-Chung (Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.7, 2015 , pp. 1056-1069 More about this Journal
Abstract
Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to identify differentially-expressed proteins in response to osmotic pressure. In order to analyze intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures. Proteomic analyses allowed identification of 54 differentially-expressed proteins among the proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of energy, metabolism, cell rescue, and stress response. The expression of such enzymes related to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high osmotic stress was due to the significant induction of a range of crucial enzymes related to polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols biosynthesis was really related to an osmotic response and a protection mechanism against hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce other cell stress responses as with heat shock and oxidation stress responses, and these responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had drastically increased expression levels under hyperosmotic pressure.
Keywords
Yarrowia lipolytica; osmotic stress response; proteomics; erythritol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wong C-M, Siu K-L, Jin D-Y. 2004. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279: 23207-23213.   DOI
2 Wucherpfennig T, Hestler T, Krull R. 2011. Morphology engineering - osmolality and its effect on Aspergillus niger morphology and productivity. Microb. Cell Fact. 10: 58.   DOI
3 Xu S, Zhou J, Liu L, Chen J. 2011. Arginine: a novel compatible solute to protect Candida glabrata against hyperosmotic stress. Process Biochem. 46: 1230-1235.   DOI
4 Yan S, Tang Z, Su W, Sun W. 2005. Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5: 235-244.   DOI
5 Yancey PH. 2005. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 208: 2819-2830.   DOI
6 Yang L-B, Zhan X-B, Zheng Z-Y, Wu J-R, Gao M-J, Lin C-C. 2014. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour. Technol. 151: 120-127.   DOI
7 Zhang X, Lester RL, Dickson RC. 2004. Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J. Biol. Chem. 279: 22030-22038.   DOI
8 Rymowicz W, Rywinska A, Marcinkiewicz M. 2009. High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnol. Lett. 31: 377-380.   DOI
9 Rywinska A, Juszczyk P, Wojtatowicz M, Robak M, Lazar Z, Tomaszewska L, Rymowicz W. 2013. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenerg. 48: 148-166.   DOI
10 Sawada K, Taki A, Yamakawa T, Seki M. 2009. Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. J. Biosci. Bioeng. 108: 385-390.   DOI
11 Schneider R, Brors B, Burger F, Camrath S, Weiss H. 1997. Two genes of the putative mitochondrial fatty acid synthase in the genome of Saccharomyces cerevisiae. Curr. Genet. 32: 384-388.   DOI
12 Teichert U, Mechler B, Müller H, Wolf D. 1989. Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J. Biol. Chem. 264: 16037-16045.
13 Tomaszewska L, Rywinska A, Gladkowski W. 2012. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J. Ind. Microbiol. Biotechnol. 39: 1333-1343.   DOI
14 Moriyama T, Garcia-Perez A, Burg M. 1989. Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J. Biol. Chem. 264: 16810-16814.
15 Varela J, Praekelt UM, Meacock PA, Planta RJ, Mager WH. 1995. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15: 6232-6245.   DOI
16 Weber A, Kogl SA, Jung K. 2006. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J. Bacteriol. 188: 7165-7175.   DOI
17 Morin M, Monteoliva L, Insenser M, Gil C, Dominguez A. 2007. Proteomic analysis reveals metabolic changes during yeast to hypha transition in Yarrowia lipolytica. J. Mass Spectrom. 42: 1453-1462.   DOI
18 Norregaard Jensen O. 2004. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 8: 33-41.   DOI
19 Nicolet CM, Craig EA. 1989. Isolation and characterization of STI1, a stress-inducible gene from Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 3638-3646.   DOI
20 Norbeck J, Blomberg A. 1997. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl - Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J. Biol. Chem. 272: 5544-5554.   DOI
21 Perez-Torrado R, Bruno-Barcena JM, Matallana E. 2005. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl. Environ. Microbiol. 71: 6831-6837.   DOI
22 Larsson C, Gustafsson L. 1987. Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Arch. Microbiol. 147: 358-363.   DOI
23 Rep M, Krantz M, Thevelein JM, Hohmann S. 2000. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathwaydependent genes. J. Biol. Chem. 275: 8290-8300.   DOI
24 Rose MD, Misra LM, Vogel JP. 1989. KAR2, a karyogamy gene, is the yeast homolog of the mammalian BiP/GRP78 gene. Cell 57: 1211-1221.   DOI
25 Lahav R, Nejidat A, Abeliovich A. 2004. Alterations in protein synthesis and levels of heat shock 70 proteins in response to salt stress of the halotolerant yeast Rhodotorula mucilaginosa. Antonie Van Leeuwenhoek 85: 259-269.   DOI
26 Li Z, Li Z. 2012. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks. BBA Rev. Cancer 1826: 13-22.
27 Mager WH, de Boer AH, Siderius MH, Voss H-P. 2000. Cellular responses to oxidative and osmotic stress. Cell Stress Chaperones 5: 73.   DOI
28 Mann M, Jensen ON. 2003. Proteomic analysis of posttranslational modifications. Nat. Biotechnol. 21: 255-261.   DOI
29 Mansour S, Bailly J, Delettre J, Bonnarme P. 2009. A proteomic and transcriptomic view of amino acids catabolism in the yeast Yarrowia lipolytica. Proteomics 9: 4714-4725.   DOI
30 Masselot M, de Robichon-Szulmajster H. 1975. Methionine biosynthesis in Saccharomyces cerevisiae. Mol. Gen. Genet. 139: 121-132.   DOI
31 Hernandez R, Nombela C, Diez-Orejas R, Gil C. 2004. Twodimensional reference map of Candida albicans hyphal forms. Proteomics 4: 374-382.   DOI
32 Miyagi H, Kawai S, Murata K. 2009. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 284: 7553-7560.   DOI
33 Moon HJ, Jeya M, Kim IW, Lee JK. 2010. Biotechnological production of erythritol and its applications. Appl. Microbiol. Biotechnol. 86: 1017-1025.   DOI
34 Morano KA, Grant CM, Moye-Rowley WS. 2012. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190: 1157-1195.   DOI
35 Hilt W, Wolf DH. 1992. Stress-induced proteolysis in yeast. Mol. Microbiol. 6: 2437-2442.   DOI
36 Hirasawa T, Yamada K, Nagahisa K, Dinh TN, Furusawa C, Katakura Y, et al. 2009. Proteomic analysis of responses to osmotic stress in laboratory and sake-brewing strains of Saccharomyces cerevisiae. Process. Biochem. 44: 647-653.   DOI
37 Hohmann S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66: 300-372.   DOI
38 Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, de Virville JD, Remy R, des Francs-Small CC. 1998. Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol. 116: 627-635.   DOI
39 Jin Z, Mu Y-W, Sun J-Y, Li X-M, Gao X-L, Lu J. 2012. Proteome analysis of metabolic proteins (pI 4-7) in barley (Hordeum vulgare) malts and initial application in malt quality discrimination. J. Agric. Food Chem. 61: 402-409.   DOI
40 Kim HJ, Lee H-R, Kim CS, Jin Y-S, Seo J-H. 2013. Investigation of protein expression profiles of erythritolproducing Candida magnoliae in response to glucose perturbation. Enzyme Microb. Technol. 53: 174-180.   DOI
41 Kim SI, Choi HK, Kim JH, Lee HS, Hong SS. 2001. Effect of osmotic pressure on paclitaxel production in suspension cell cultures of Taxus chinensis. Enzyme Microb. Technol. 28: 202-209.   DOI
42 Krantz M, Nordlander B, Valadi H, Johansson M, Gustafsson L, Hohmann S. 2004. Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Eukaryot. Cell 3: 1381-1390.   DOI
43 De Nobel H, Lawrie L, Brul S, Klis F, Davis M, Alloush H, Coote P. 2001. Parallel and comparative analysis of the proteome and transcriptome of sorbic acid-stressed Saccharomyces cerevisiae. Yeast 18: 1413-1428.   DOI
44 Dickson RC, Sumanasekera C, Lester RL. 2006. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae. Prog. Lipid Res. 45: 447-465.   DOI
45 Dihazi H, Asif AR, Agarwal NK, Doncheva Y, Müller GA. 2005. Proteomic analysis of cellular response to osmotic stress in thick ascending limb of Henle’s loop (TALH) cells. Mol. Cell. Proteomics 4: 1445-1458.   DOI
46 Dragosits M, Stadlmann J, Graf A, Gasser B, Maurer M, Sauer M, et al. 2010. The response to unfolded protein is involved in osmotolerance of Pichia pastoris. BMC Genomics 11: 207.   DOI
47 llis EM. 2002. Microbial aldo-keto reductases. FEMS Microbiol. Lett. 216: 123-131.   DOI
48 Fazius F, Shelest E, Gebhardt P, Brock M. 2012. The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol. Microbiol. 86: 1508-1530.   DOI
49 Cossins EA. 1980. One-carbon metabolism, pp. 365-418. The Biochemistry of Plants, Vol II. Academic Press, New York.
50 Garay-Arroyo A, Covarrubias AA. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15: 879-892.   DOI
51 Craig EA, Kramer J, Kosic-Smithers J. 1987. SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc. Natl. Acad. Sci. USA 84: 4156-4160.   DOI
52 Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. 2004. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4: 1633-1649.   DOI
53 Blomberg A, Adler L. 1992. Physiology of osmotolerance in fungi. Adv. Microb. Physiol. 33: 145.   DOI
54 Boubekeur S, Bunoust O, Camougrand N, Castroviejo M, Rigoulet M, Guerin B. 1999. A mitochondrial pyruvate dehydrogenase bypass in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274: 21044-21048.   DOI
55 Bukau B, Weissman J, Horwich A. 2006. Molecular chaperones and protein quality control. Cell 125: 443-451.   DOI
56 Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, et al. 2004. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25: 1327-1333.   DOI
57 Chang Q, Griest TA, Harter TM, Petrash JM. 2007. Functional studies of aldo-keto reductases in Saccharomyces cerevisiae. BBA Mol. Cell Res. 1773: 321-329.
58 Chang Q, Petrash JM. 2008. Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. BBA Mol. Cell Res. 1783: 237-245.
59 Compagno C, Boschi F, Ranzi BM. 1996. Glycerol production in a triose phosphate isomerase-deficient mutant of Saccharomyces cerevisiae. Biotechnol. Progr. 12: 591-595.   DOI
60 Cohen R, Holland JP, Yokoi T, Holland MJ. 1986. Identification of a regulatory region that mediates glucosedependent induction of the Saccharomyces cerevisiae enolase gene ENO2. Mol. Cell. Biol. 6: 2287-2297.   DOI
61 Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S. 2009. Genom ewide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae. J. Appl. Genet. 50: 301-310.   DOI