• Title/Summary/Keyword: Digital-to-Analog-Converter

Search Result 566, Processing Time 0.029 seconds

A 500MSamples/s 6-Bit CMOS Folding and Interpolating AD Converter (500MSamples/s 6-비트 CMOS 폴딩-인터폴레이팅 아날로그-디지털 변환기)

  • Lee Don-Suep;Kwack Kae-Dal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1442-1447
    • /
    • 2004
  • In this paper, a 6-Bit CMOS Folding and Interpolating AD Converter is presented. The converter is considered to be useful as an integrated part of a VLSI circuit handling both analog and digital signals as in the case of HDD or LAN applications. A built-in analog circuit for VLSI of a high-speed data communication requires a small chip area, low power consumption, and fast data processing. The proposed folding and interpolating AD Converter uses a very small number of comparators and interpolation resistors, which is achieved by cascading a couple of folders working in different principles. This reduced number of parts is a big advantage for a built-in AD converter design. The design is based on 0.25m double-poly 2 metal n-well CMOS process. In the simulation, with the applied 2.5V and a sampling frequency of 500MHz, the measurements are as follows: power consumption of 27mw, INL and DNL of $\pm$0.1LSB, $\pm$0.15LSB each, SNDR of 42dB with an input signal of 10MHz.

The Analysis of Total Ionizing Dose Effects on Analog-to-Digital Converter for Space Application (우주용 ADC의 누적방사선량 영향 분석)

  • Kim, Tae-Hyo;Lee, Hee-Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.85-90
    • /
    • 2013
  • In this paper, 6bit SAR ADC tolerant to ionizing radiation is presented. Radiation tolerance is achieved by using the Dummy Gate Assisted (DGA) MOSFET which was proposed to suppress the leakage current induced by ionizing radiation and its comparing sample is designed with the conventional MOSFET. The designed ADC consists of binary capacitor DAC, dynamic latch comparator, and digital logic and was fabricated using a standard 0.35um CMOS process. Irradiation was performed by Co-60 gamma ray. After the irradiation, ADC designed with the conventional MOSFET did not operate properly. On the contrary, ADC designed with the DGA MOSFET showed a little parametric degradation of which DNL was increased from 0.7LSB to 2.0LSB and INL was increased from 1.8LSB to 3.2LSB. In spite of its parametric degradation, analog to digital conversion in the ADC with DGA MOSFET was found to be possible.

Study on Wireless Acquisition of Vibration Signals (진동신호 무선 수집에 대한 연구)

  • Lee, Sunpyo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.254-258
    • /
    • 2018
  • A Wi-Fi signal network (WSN) system is introduced in this paper. This system consists of several data-transmitting sensor modules and a data-receiving server. Each sensor module and the server contain a unique intranet IP address. A piezoelectric accelerometer with a bandwidth of 12 kHz, a 24-bit analog-digital converter with a sampling rate of 15.625 kS/s, a 32-bit microprocessor unit, and a 1-Mbps Wi-Fi module are used in the data-transmitting sensor module. A 300-Mbps router and a PC are used in the server. The system is verified using an accelerometer calibrator. The voltage output from the sensor is converted into 24-bit digital data and transmitted via the Wi-Fi module. These data are received by a Wi-Fi router connected to a PC. The input frequencies of the accelerometer calibrator (320 Hz, 640 Hz, and 1280 Hz) are used in the data transfer verification. The received data are compared to the data retrieved directly from the analog-to-digital converter used in the sensor module. The comparison shows that the developed system represents the original data considerably well. Theoretically, the system can acquire vibration signals from 600 sensor modules at an accelerometer bandwidth of 15.625 kHz. However, delay exists owing to software processes, multiplexing between sensor modules, and the use of non-real time operating system. Hence, it is recommended that this system may be used to acquire vibration signals with up to 10 kHz, which is approximately 70% of the theoretical maximum speed of the system. The system can be upgraded using parts with higher performance

Implementation of 24bit Sigma-delta D/A Converter for an Audio (오디오용 24bit 시그마-델타 D/A 컨버터 구현)

  • Heo, Jeong-Hwa;Park, Sang-Bong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.53-58
    • /
    • 2008
  • This paper designs sigma-delta D/A Converter with a high resolution and low power consumption. It reorganizes the input data along LJ, RJ, I2S mode and bit mode to the output data of A/D converter. The D/A converter decodes the original analog signal through HBF, Hold and 5th CIFB(Cascaded Integrators with distributed Feedback as well as distributed input coupling) sigma-delta modulation blocks. It uses repeatedly the addition operation in instead of the multiply operation for the chip area and the performance. Also, the half band filters of similar architecture composed the one block and it used the sample-hold block instead of the sinc filter. We supposed simple D/A Converter decreased in area. The filters of the block analyzed using the matlab tool. The top block designed using the top-down method by verilog language. The designed block is fabricated using Samsung 0.35um CMOS standard cell library. The chip area is 1500*1500um.

  • PDF

A Multi-Harvested Self-Powered Sensor Node Circuit (다중 에너지 수확을 이용한 자가발전 센서노드 회로)

  • Seo, Yo-han;Lee, Myeong-han;Jung, Sung-hyun;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.585-588
    • /
    • 2014
  • This paper presents a self-powered sensor node circuit using photovoltaic and vibration energy harvesting. The harvested energy from a solar cell and a vibration device(PZT) is stored in a storage capacitor. The stored energy is managed by a PMU(Power Management Unit). In order to supply a stable voltage to the sensor node, an LDO(Low Drop Out Regulator) is used. The LDO drives a temperature sensor and a SAR ADC(Successive Approximate Register Analog-to-Digital Converter), and 10-bit digital output data corresponding to current temperature is obtained. The proposed circuit is designed in a 0.35um CMOS process, and the designed chip size including PADs is $1.1mm{\times}0.95mm$.

  • PDF

Fully Digital Controlled Power Supply for PLS (전 디지털제어 전원장치)

  • Ha, Ki-Man;Kim, Y.S.;Lee, S.K.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1011-1015
    • /
    • 2005
  • Fully digital controlled 20-bit magnet power supplies have been developed and successfully tested for closed orbit correction of PLS(Pohang Light Source). The new digital power supply has used fiber optics for 25kHz switching of IGBT drivers, and implemented DSP, ADC, Interlock, DCCT cards in a compact 3U-sized 19" chassis. Input/Output low-pass filters suppress harmonics of 60Hz line frequency and switching frequency noise effectively. Overall performance of the power supplies have been demonstrated as +/- 2ppm short-term stability(<1 min), and +/- 10ppm long-term stability(<36 hours). All the existing 12-bit 70 power supplies for vertical correction magnets will be replaced with new digital power supplies during 2005 summer shutdown period. In this paper, we will describe the hardware structure and control method of the digital power supply and the experimental results will be shown.

  • PDF

Research on Broadband Signal Processing Techniques for the Small Millimeter Wave Tracking Radar (소형 밀리미터파 추적 레이더를 위한 광대역 신호처리 기술 연구)

  • Choi, Jinkyu;Na, Kyoung-Il;Shin, Youngcheol;Hong, Soonil;Park, Changhyun;Kim, Younjin;Kim, Hongrak;Joo, Jihan;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.49-55
    • /
    • 2021
  • Recently, a small tracking radar requires the development of a small millimeter wave tracking radar having a high range resolution that can acquire and track a target in various environments and disable the target system with a single blow. Small millimeter wave tracking radar with high range resolution needs to implement a signal processor that can process wide bandwidth signals in real time and meet the requirements of small tracking radar. In this paper, we designed a signal processor that can perform the role and function of a signal processor for a small millimeter wave tracking radar. The signal processor for the small millimeter wave tracking radar requires the real-time processing of input signal of OOOMHz center frequency and OOOMHz bandwidth from 8 channels. In order to satisfy the requirements of the signal processor, the signal processor was designed by applying the high-performance FPGA (Field Programmable Gate Array) and ADC (Analog-to-digital converter) for pre-processing operations, such as DDC (Digital Down Converter) and FFT (Fast Fourier Transform). Finally, the signal processor of the small millimeter wave tracking radar was verified via performance test.

Performance of Initial Timing Acquisition in the DS-UWB Systems with Different Transmit Pulse Shaping Filters (DS-UWB 시스템에서 송신 필터에 따른 초기 동기 획득 성능 비교)

  • Kang, Kyu-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.5
    • /
    • pp.493-502
    • /
    • 2009
  • In this paper, we compare the performance of initial timing acquisition in direct sequence ultra-wideband(DS-UWB) systems with different transmit pulse shaping filters through extensive computer simulations. Simulation results show that the timing acquisition performance of the DS-UWB system, whose chip rate is 1.32 Gchip/s, employing a rectangular transmit filter is similar to that employing a square root raised cosine(SRRC) filter with an interpolation factor of 4 in the realistic UWB channels(CM1 and CM3) as well as the additive white Gaussian noise(AWGN) channel. Additionally, we present both a 24-parallel digital correlator structure and a 24-parallel processing searcher operating at a 55 MHz system clock, and then briefly discuss the initial timing acquisition procedure. Because we can adopt an 1.32 Gsample/s digital-to-analog(D/A) converter and an 1.32 Gsample/s analog-to-digital(AID) converter in the DS-UWB system by employing the rectangular transmit filter, we have a realistic solution for the DS-UWB chipset development.

A study on measurement apparatus for ferroelectricity in ferroelectrics (강유전특성 측정장치의 연구개발)

  • Lee, Chang-Hun;Kang, Dae-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1317-1319
    • /
    • 1997
  • This paper is to study and develope a measurement apparatus for ferroelectricity. The apparatus consists of wave generation part, high voltage amplifier part, measurement part, data acquisition part and the related controll circuits. Single or double excitation wave is digitalized and sent to the external RAM of wave generation part by personal computer. These datas saved in the RAM are converted to analog excitation wave through D/A converter. The frequency of excitation wave is depend on the read-out speed of the RAM by clock pulse. Such generated wave is applied to high voltage amplifier as a input voltage. The output of high voltage amplifier is applied to ferroelectrics and the response is obtained from the charge amplifier of measurement part. The response is sampled and converted to digital datas through AID converter. These digital datas are automatically saved in the external RAM of acquisition part. The computer takes the digital datas and calculates the electric displacement D, the electric field and the dielectric constant $\varepsilon$. We tested for PZT ceramic sample and could observed the D-E hysteresis lops and ${\varepsilon}_s$-E hysteresis loops with good forms.

  • PDF

A Time-Domain Comparator for Micro-Powered Successive Approximation ADC (마이크로 전력의 축차근사형 아날로그-디지털 변환기를 위한 시간 도메인 비교기)

  • Eo, Ji-Hun;Kim, Sang-Hun;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1250-1259
    • /
    • 2012
  • In this paper, a time-domain comparator is proposed for a successive approximation (SA) analog-to-digital converter (ADC) with a low power and high resolution. The proposed time-domain comparator consists of a voltage-controlled delay converter with a clock feed-through compensation circuit, a time amplifier, and binary phase detector. It has a small input capacitance and compensates the clock feed-through noise. To analyze the performance of the proposed time-domain comparator, two 1V 10-bit 200-kS/s SA ADCs with a different time-domain comparator are implemented by using 0.18-${\mu}m$ 1-poly 6-metal CMOS process. The measured SNDR of the implemented SA ADC is 56.27 dB for the analog input signal of 11.1 kHz, and the clock feed-through compensation circuit and time amplifier of the proposed time-domain comparator enhance the SNDR of about 6 dB. The power consumption and area of the implemented SA ADC are 10.39 ${\mu}W$ and 0.126 mm2, respectively.