• 제목/요약/키워드: Digital current mode control

검색결과 92건 처리시간 0.021초

Peak-Valley Current Mode Controlled H-Bridge Inverter with Digital Slope Compensation for Cycle-by-Cycle Current Regulation

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.1989-2000
    • /
    • 2015
  • In this paper, digital peak current mode control for single phase H-bridge inverters is developed and implemented. The digital peak current mode control is achieved by directly controlling the PWM signals by cycle-by-cycle current limitation. Unlike the DC-DC converter where the output voltage always remains in the positive region, the output of DC-AC inverter flips from positive to negative region continuously. Therefore, when the inverter operates in negative region, the control should be changed to valley current mode control. Thus, a novel control logic circuit is required for the function and need to be analyzed for the hardware to track the sinusoidal reference in both regions. The problem of sub-harmonic instability which is inherent with peak current mode control is also addressed, and then proposes the digital slope compensation in constant-sloped external ramp to suppress the oscillation. For unipolar PWM switching method, an adaptive slope compensation in digital manner is also proposed. In this paper, the operating principles and design guidelines of the proposed scheme are presented, along with the performance analysis and numerical simulation. Also, a 200W inverter hardware prototype has been implemented for experimental verification of the proposed controller scheme.

전력변환회로의 디지털 전류모드제어기 설계 (Design of Digital Current Mode Control for Power Converters)

  • 정영석
    • 전력전자학회논문지
    • /
    • 제10권2호
    • /
    • pp.162-168
    • /
    • 2005
  • 본 논문에서는 전력변환회로를 위한 디지털 전류모드제어기를 소신호 모델식을 기반으로 하여 설계한다. 다양한 응용 가능성을 내포하고 있는 디지털 제어기를 전류모드제어를 사용하는 전력변환회로의 설계에 응용한다. 전력변환회로의 상태평균화 기법을 적용한 연속 시간 소신호 모델을 이용함으로써 부스트, 벅, 벅-부스트 컨버터에 모두 적용 가능한 디지털 전류모드제어기를 설계하고, 설계한 제어기는 모든 시비율 동작 조건에서 안정함을 확인한다. 16bit DSP 마이크로프로세서인 TMS320LF2406A를 사용하여 설계된 디지털 제어기를 구현하고, 아날로그제어기를 이용한 전류모드제어에서의 동작 조건에 따른 불안정성 문제를 해결할 수 있음을 실험을 통해 확인한다.

Compensation Technique for Current Sensorless Digital Control of Bridgeless PFC Converter under Critical Conduction Mode

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2310-2318
    • /
    • 2018
  • Critical conduction mode (CRM) operation is more efficient than continuous conduction mode (CCM) operation at low power levels because of the valley switching of switches and elimination of the reverse recovery losses of boost diodes. When using a sensorless digital control method, an error occurs between the actual and the estimated current. Because of the error, it operates as CCM or discontinuous conduction mode (DCM) during CRM operation and also has an adverse effect on THD of input current. In this paper, a current sensorless technique is presented in an inverter system using a bridgeless boosted power factor correction converter, and a compensation method is proposed to reduce CRM calculation error. The validity of the proposed method is verified by simulation and experiment.

Controls Methods Review of Single-Phase Boost PFC Converter : Average Current Mode Control, Predictive Current Mode Control, and Model Based Predictive Current Control

  • Hyeon-Joon Ko;Yeong-Jun Choi
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.231-238
    • /
    • 2023
  • 부스트 PFC (Power Factor Correction)컨버터는 AC 입력 전류의 단일 역률과 낮은 THD (Total Harmonic Distortion)를 달성하기 위해 다양한 제어기법들이 연구되고 있다. 그중 인덕터 전류의 평균값을 전류지령에 추종하도록 제어하는 평균전류 모드 제어가 있으며 가장 널리 사용되고 있다. 하지만, 오늘날 디지털 프로세서의 발달로 고도화된 디지털 제어가 가능해지면서 부스트 PFC 컨버터의 예측제어가 관심을 받고 있다. 예측제어에는 예측 알고리즘으로 듀티를 미리 생성하는 예측전류 모드 제어 및 모델을 기반으로 한 비용함수를 선정하여 스위칭 동작을 하는 모델예측제어로 분류된다. 따라서 본 논문에서는 부스트 PFC 컨버터의 평균전류 모드 제어, 예측전류 모드 제어, 모델예측 전류 제어를 간단히 설명한다. 또한, 시뮬레이션을 통해 전체 부하 및 다양한 외란 조건에서의 전류 제어를 비교 분석한다.

Digital Control of a Power Factor Correction Boost Rectifier Using Diode Current Sensing Technique

  • Shin, Jong-Won;Hyeon, Byeong-Cheol;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.903-910
    • /
    • 2009
  • In this paper, a digital average current mode control using diode current sensing technique is proposed. Although the conventional inductor current sensing technique is widely used, the sensed signal of the current is negative. As a result, it requires an additional circuit to be applied to general digital controller ICs. The proposed diode current sensing method not only minimizes the peripheral circuit around the digital IC but also consumes less power to sense current information than the inductor current sensing method. The feasibility of the proposed technique is verified by experiments using a 500W power factor correction (PFC) boost rectifier.

A Novel Predictive Digital Controlled Sensorless PFC Converter under the Boundary Conduction Mode

  • Wang, Jizhe;Maruta, Hidenori;Matsunaga, Motoshi;Kurokawa, Fujio
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.1-10
    • /
    • 2017
  • This paper presents a novel predictive digital control method for boundary conduction mode PFC converters without the need for detecting the inductor current. In the proposed method, the inductor current is predicted by analytical equations instead of being detected by a sensing-resistor. The predicted zero-crossing point of the inductor current is determined by the values of the input voltage, output voltage and predicted inductor current. Importantly, the prediction of zero-crossing point is achieved in just a single switching cycle. Therefore, the errors in predictive calculation caused by parameter variations can be compensated. The prediction of the zero-crossing point with the proposed method has been shown to have good accuracy. The proposed method also shows high stability towards variations in both the inductance and output power. Experimental results demonstrate the effectiveness of the proposed predictive digital control method for PFC converters.

임계전류도통모드로 동작하는 디지털제어 단상 역률개선 컨버터 (Digital-controlled Single-phase Power-factor Correction Converter Operating in Critical Current Conduction Mode)

  • 정강률
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2570-2578
    • /
    • 2010
  • 본 논문에서는 임계전류도통모드로 동작하는 디지털제어 단상 역률개선(PFC; power-factor correction) 컨버터를 제안한다. 제안한 컨버터는 PFC를 위하여 DC-DC 부스트 컨버터 구조를 이용하며 인덕터전류를 임계도통모드로 동작시킨다. 또한 제안한 컨버터는 마이컴을 이용하여 디지털적으로 제어되기 때문에 제어회로는 간단해지고 컨버터는 더욱 효과적으로 동작한다. 본 논문에서는 먼저 제안한 컨버터의 동작원리를 설명하고 회로를 해석한다. 그리고 본 논문은 제안한 컨버터의 구현방법을 소프트웨어와 회로설계 부분으로 구분하여 구체적인 설계예와 함께 설명한다. 또한 설계된 회로파라미터에 의한 프로토타입 컨버터의 실험결과로 제안한 컨버터가 단상 PFC 컨버터로써 좋은 동작 특성을 가지고 있음을 보인다.

An FPGA-based Fully Digital Controller for Boost PFC Converter

  • Lai, Li;Luo, Ping
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.644-651
    • /
    • 2015
  • This paper introduces a novel digital one cycle control (DOCC) boost power factor correction (PFC) converter. The proposed PFC converter realizes the FPGA-based DOCC control approach for single-phase PFC rectifiers without input voltage sensing or a complicated two-loop compensation design. It can also achieve a high power factor and the operation of low harmonic input current ingredients over universal loads in continuous conduction mode. The trailing triangle modulation adopted in this approach makes the acquisition of the average input current an easy process. The controller implementation is based on a boost topology power circuit with low speed, low-resolution A/D converters, and economical FPGA development board. Experimental results demonstrate that the proposed PFC rectifier can obtain a PF value of up to 0.999 and a minimum THD of at least 1.9% using a 120W prototype.

플라이백 컨버터방법에 의한 태양광발전설비의 납축전지 스위칭모드 전환형 펄스충전기 개발 (Development of the Switching Mode Conversion Type Pulse Charger for the Lead Battery of Solar Cell Generator Equipment by Fly-Back Converter Method)

  • 신춘식;안영주;김동완
    • 전기학회논문지P
    • /
    • 제58권1호
    • /
    • pp.20-26
    • /
    • 2009
  • In this paper, the switching mode conversion type pulse charger by fly-back converter method for lead battery of the solar cell generator equipment is proposed. And we propose the control circuit and design method of insulated switching mode convert type pulse charger by fly-back convert method in the lead battery. The proposed system can minimize the current consumption by digital pulse. Also the proposed system can generate the constant 10[KHz] frequency, transmit the signal with main control system in the power control system. And it supervises the state of lead battery using one chip micro processor. The proposed the switching mode conversion type pulse charger by the fly-back converter method can charge fast and stabilize lead battery with nominal value 12[V], 20[AH]. Also we propose the design procedure of the power control circuit for turn ratio of fly-back inductor and determining method of values such as the charging current, bulk current, partial current, over current value and fixed charging voltage. The experiment results for the voltage and current wave for partial, bulk, over and fixed charging period show the good charging effect and performance. And the PCB and internal coupling diagram of the switching mode conversion type pulse charger by fly-back converter method is presented.

3차원 전류좌표계 해석법에 의한 DSP 전력분석 제어장치에 관한 연구 (A study on DSP based power analyzing and control system by analysis of 3-dimensional space current co-ordinates)

  • 임영철;정영국;나석환;최찬학;장영학;양승학
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.543-552
    • /
    • 1996
  • The goal of this paper is to developed a DSP based power analyzing and control system by 3-Dimensional (3-D) space current co-ordinates. A developed system is made up of 486-PC and DSP (Digital Signal Processor) board, Active Power Filter, Non-linear thyristor load, and Power analyzing and control program for Windows. Power is analyzed using signal processing techniques based on the correlation between voltage and current waveforms. Since power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm is performed by DSP, power analysis is achieved in real-time even under highly dynamic nonlinear loading conditions. Combining control algorithm with power analysis algorithm, flexibility of the proposed system which has both power analysis mode and control mode, is greatly enhanced. Non-active power generated while speed of induction motor is controlled by modulating firing angle of thyristor converter, is compensated by Active Power Filter for verifying a developed system. Power analysis results, before/after compensation, are numerically obtained and evaluated. From these results, various graphic screens for time/frequency/3-D current co-ordinate system are displayed on PC. By real-time analysis of power using a developed system, power quality is evaluated, and compared with that of conventional current co-ordinate system. (author). refs., figs. tabs.

  • PDF