• Title/Summary/Keyword: Digital Phase-Locked Loop

Search Result 157, Processing Time 0.025 seconds

A Robust PLL Technique Based on the Digital Lock-in Amplifier under the Non-Sinusoidal Grid Conditions (디지털 록인앰프를 이용한 비정현 계통하에서 강인한 PLL 방법)

  • Ashraf, Muhammad Noman;Khan, Reyyan Ahmad;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.104-106
    • /
    • 2018
  • The harmonics and the DC offset in the grid can cause serious synchronization problems for grid connected inverters (GCIs) which leads not able to satisfy the IEEE 519 and p1547 standards in terms of phase and frequency variations. In order to guarantee the smooth and reliable synchronization of GCIs with the grid, Phase Locked Loop (PLL) is the crucial element. Typically, the performance of the PLL is assessed to limit the grid disturbances e.g. grid harmonics, DC Offset and voltage sag etc. To ensure the quality of GCI, the PLL should be precise in estimating the grid amplitude, frequency and phase. Therefore, in this paper a novel Robust PLL technique called Digital Lock-in Amplifier (DLA) PLL is proposed. The proposed PLL estimate the frequency variations and phase errors accurately even in the highly distorted grid voltage conditions like grid voltage harmonics, DC offsets and grid voltage sag. To verify the performance of proposed method, it is compared with other six conventional used PLLs (CCF PLL, SOGI PLL, SOGI LPF PLL, APF PLL, dqDSC PLL, MAF PLL). The comparison is done by simulations on MATLAB Simulink. Finally, the experimental results are verified with Single Phase GCI Prototype.

  • PDF

Design of PLL Frequency Synthesizer with High Spectral Purity and Ultra-Fast Switching Speed (고순도 스펙트럼과 초고속 스위칭 속도의 PLL 주파수 합성기 설계)

  • 이현석;손종원;안병록;유흥균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.10B
    • /
    • pp.1464-1469
    • /
    • 2001
  • 본 논문에서는 디지털 하이브리드 위상고정루프(Digital Hybrid Phase-Locked Loop, DHPLL) 주파수 합성기 구조에서 고 순도 스펙트럼과 초고속 스위칭 속도를 위한 설계기술을 제안한다. D/A 변환기 출력으로 전압제어발진기(Voltage Controlled Oscillator, VCO)를 구동하는 개 루프(open-loop) 구성 방식과 기존 위상고정루프(Phase Locked Loop, PLL)의 폐 루프(closed-loop) 구성 방식을 혼합한 하이브리드 구조의 주파수 합성기를 고려하여, 시스템 변수(개 루프 대역과 위상 여유)와 성능 파라미터(정착시간, 위상 잡음, 그리고 최대 오버슈트(Max. overshoot)의 관계를 연구하였다. 그리고 이 관계를 통해 스펙트럼 순도와 스위칭 속도를 향상시키기 위한 최적의 3가지 설계방안을 제시한다. 컴퓨터 시뮬레이션 결과, 주파수 스위칭 과정에서 발생하는 최대 오버슈트가 0.0991%이고 완전 정상상태 도달시간은 0.288msec이다. offset 주파수 10KHz에서 위상 잡음은 -128.15dBc이다.

  • PDF

A Digital Carrier Recovery Scheme for Satellite Transponder (디지털방식의 위성 트랜스폰더 반송파 복원 방안 연구)

  • Lee, Yoon-Jong;Choi, Seung-Woon;Kim, Chong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10A
    • /
    • pp.807-813
    • /
    • 2009
  • A Satellite transponder is the Communication system to process signal with up-link signal recovery, and transmit to ground station through down-link. The orbit flight in the deep space causes high doppler shift in the received signals from the ground station so that the Carrier recovery and fast synchronization system are essential for the transponder system. The conventional analog transponder is employing the system's carrier recovery along with the PLL (Phase Locked Loop) designed for satellite's operation. This paper presents a digital carrier recovery scheme which can provide more reliable and software reconfigurable implementation technique for satellite transponder system without verifying scheme along with transponder designed for short distance or deep space satellite.

Behavioral design aad verification of electronic circuits using CPPSIM (CPPSIM을 이용한 동작 레벨에서의 회로 설계 및 검증)

  • Han, Jin-Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.893-899
    • /
    • 2008
  • Behavioral level simulations of LDO voltage regulator and phase locked loop(PLL) are performed with CPPSIM, a behavioral-level simulation tool based on C language. The validity of the simulation tool is examined by modeling analog circuits and simulating the circuits. In addition, the designed PLL adopted digital architecture to possess advantages of digital circuits.

Development of the Frequency Synthesizer for Multi-function Radar (다기능 레이더용 주파수합성기 개발)

  • Yi, Hui-min;Choi, Jae-hung;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1099-1106
    • /
    • 2018
  • In this paper, we developed and then analyzed the specifications of the frequency synthesizer which was applied to long range MFR (Multi-function Radar). These specifications were able to guarantee the functions and performance of MFR. MFR was the radar system that used phase array for electronically scanning. This frequency synthesizer made various frequency signals including to STALO (Stable Local Oscillator) for MFR. By analyzing the MFR requirements, we choose the optimal frequency synthesis method and then we got the best performance and functionality including to physical size for this system. We designed and fabricated DDS (Direct Digital Synthesizer)-driven Offset-PLL (Phase Locked Loop) synthesizer to meet the requirements which were low phase noise, fast switching time and low spurious. This synthesizer had less than -131dBc/Hz@100kHz phase noise and less than $4.1{\mu}s$ switching time, respectively.

Introduction to System Modeling and Verification of Digital Phase-Locked Loop (디지털 위상고정루프의 시스템 모델링 및 검증 방법 소개)

  • Shinwoong, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • Verilog-HDL-based modeling can be performed to confirm the fast operation characteristics after setting the design parameters of each block considering the stability of the system by performing linear phase-domain modeling on the phase-locked loop. This paper proposed Verilog-HDL modeling including DCO noise and DTC nonlinear characteristic. After completing the modeling, the time-domain transient simulation can be performed to check the feasibility and the functionality of the proposed PLL system, then the phase noise result from the system design based on the functional model can be verified comparing with the ideal phase noise graph. As a result of the comparison of simulation time (6 us), the Verilog-HDL-based modeling method (1.43 second) showed 484 times faster than the analog transistor level design (692 second) implemented by TSMC 0.18-㎛.

A Novel Phase Locked Loop for Grid-Connected Converters under Non-Ideal Grid Conditions

  • Yang, Long-Yue;Wang, Chong-Lin;Liu, Jian-Hua;Jia, Chen-Xi
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • Grid synchronization is one of the key techniques for the grid-connected power converters used in distributed power generation systems. In order to achieve fast and accurate grid synchronization, a new phase locked loop (PLL) is proposed on the basis of the complex filter matrixes (CFM) orthogonal signal generator (OSG) crossing-decoupling method. By combining first-order complex filters with relation matrixes of positive and negative sequence voltage components, the OSG is designed to extract specific frequency orthogonal signals. Then, the OSG mathematical model is built in the frequency-domain and time-domain to analyze the spectral characteristics. Moreover, a crossing-decoupling method is suggested to decouple the fundamental voltage. From the eigenvalue analysis point of view, the stability and dynamic performance of the new PLL method is evaluated. Meanwhile, the digital implementation method is also provided. Finally, the effectiveness of the proposed method is verified by experiments under unbalanced and distorted grid voltage conditions.

A Multiple Gain Controlled Digital Phase and Frequency Detector for Fast Lock-Time (빠른 Lock-Time을 위한 다중 이득 제어 디지털 위상 주파수 검출기)

  • Hong, Jong-Phil
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.2
    • /
    • pp.46-52
    • /
    • 2014
  • This paper presents a multiple gain controlled digital phase and frequency detector with a fast lock-time. Lock-time of the digital PLL can be significantly reduced by applying proposed adaptive gain control technique. A loop gain of the proposed digital PLL is controlled by three conditions that are very large phase difference between reference and feedback signal, small phase difference and before lock-state, and after lock-state. The simulation result shows that lock-time of the proposed multiple gain controlled digital PLL is 100 times faster than that of the conventional structure with unit gain mode.

Novel 10 GHz Bio-Radar System Based on Frequency Multiplier and Phase-Locked Loop (주파수 체배기와 PLL을 이용한 10 GHz 생체 신호 레이더 시스템)

  • Myoung, Seong-Sik;An, Yong-Jun;Moon, Jun-Ho;Jang, Byung-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.208-217
    • /
    • 2010
  • This paper presents a novel 10 GHz bio-radar system based on a frequency multiplier and phase-locked loop(PLL) for non-contact measurement of heartbeat and respiration rates. In this paper, a 2.5 GHz voltage controlled oscillator (VCO) with PLL is employed to as a frequency synthesizer, and 10 GHz continuous wave(CW) signal is generated by using frequency multiplier from 2.5 GHz signal. This paper also presents the noise characteristic of the proposed system. As a result, a better performance and economical frequency synthesizer can be achieved with the proposed bio-radar system. The experimental results shows excellent bio-signal measurement up to 100 cm without any additional digital signal processing(DSP), and the proposed system is validated.

PLL Technique for Resonant Frequency Trancking in High Frequency Resonant Inverters (공진형 고주파 인버터에서의 공진주파수 추적을 위한 PLL 기법)

  • 김학성
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.368-371
    • /
    • 2000
  • The PLL(Phase-Locked Loop) techniques re employed to make the switching frequency of a resonant inverter follow the resonant frequency which may vary due to the load variations during operation. The conventional design guide of PLL is not suitable in these case since the inverter characteristics are not considered. In this paper the phase characteristics of a resonant inverter is analysed and added to the closed loop. And the design of PLL with digital phase detector is illustrated for the output frequency to track the resonant frequency of the inverter.

  • PDF