• Title/Summary/Keyword: Digital Logic Circuits

Search Result 138, Processing Time 0.021 seconds

Study for Digital Logic Circuit Using Resonant Tunneling Diodes (공명투과다이오드를 이용한 논리회로의 응용 연구)

  • 추혜용;박평운;이창희;이일항
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.75-80
    • /
    • 1994
  • AlAs/GaAs/AlAs RTDs(Resonant Tunneling Diodes) are fabricated and current-voltage properties of them are measured. At room temperature, peak to valley ratio is 2.4 NOT.AND.OR logic gates and Flip-Flop are fabricated using the bistable characteristics of RTDs. Although NOT.AND.OR logic gates need 5~8 transistors. only one RTD is sufficient to fabricate the logic gates. Since the switching time is very short(<10$^12$sec), it is possible to drive the semiconductor circuits fast and integrate them very large. And it is convinced the possibility of integrating RTDs to multilevel logic circuits by observing two peaks of similar current in the serial connection of two RTDs.

  • PDF

The Impact of TDDB Failure on Nanoscale CMOS Digital Circuits

  • Kim, Yeon-Bo;Kim, Kyung-Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.3
    • /
    • pp.27-34
    • /
    • 2012
  • This paper presents the impact of time dependent dielectric breakdown (TDDB, also called as gate oxide breakdown) failure on nanoscale digital CMOS Circuits. Recently, TDDB for ultra-thin gate oxides has been considered as one of the critical reliability issues which can lead to performance degradation or logic failures in nanoscale CMOS devices. Also, leakage power in the standby mode can be increased significantly. In this paper, TDDB aging effects on large CMOS digital circuits in the 45nm technology are analyzed. Simulation results show that TDDB effect on MOSFET circuits can result in more significant increase of power consumption compared to delay increase.

Implementation of a Web-based Virtual Laboratory System for Digital Logic Circuits Using Virtual Digital Kit (가상 디지털 키트를 이용한 웹기반 논리회로 가상실험시스템의 구현)

  • Kim, Dongsik;Moon, Ilhyun;Woo, Sangyeon
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.6
    • /
    • pp.11-18
    • /
    • 2007
  • The proposed virtual laboratory system for digital logic circuits is composed of two main sessions, which are concept-learning session and virtual experiment session by virtual digital kit. During concept-learning session the learners can easily understand the important principles in the digital circuits to be performed. In addition, during virtual laboratory session the virtual experiments are performed by assembling and connecting the circuits on the virtual bread board, applying input voltages, making the output measurements, and comparing and transmitting the virtual experimental data. Every activity done during the virtual laboratory session is recorded on database and will be provided with the learners as a preliminary report form including personal information. Thus, the educators may check out the submitted preliminary report to estimate how well the learners understand the circuit operations. Finally, in order to show the validity of our virtual laboratory system we investigated and analysed the damage rate of real experimental equipment during class and assessed student performance on the five quizzes for one semester.

  • PDF

Design Method of Current Mode Logic Gates for High Performance LTPS TFT Digital Circuits (LTPS TFT 논리회로 성능향상을 위한 전류모드 논리게이트의 설계 방법)

  • Lee, J.C.;Jeong, J.Y.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.54-58
    • /
    • 2007
  • Development of high performance LTPS TFTs contributed to open up new SOP technology with various digital circuits integrated in display panels. This work introduces the current mode logic(CML) gate design method with which one can replace slow CMOS logic gates. The CML inverter exhibited small logic swing, fast response with high power consumption. But the power consumption became compatible with CMOS gates at higher clock speed. Due to small current values in CML, layout area is smaller than the CMOS counterpart even though CML uses larger number of devices. CML exhibited higher noise immunity thanks to its non-inverting and inverting outputs. Multi-input NAND/AND and NOR/OR gates were implemented by the same circuit architecture with different input confirugation. Same holds for MUX and XNOR/XOR CML gates. We concluded that the CML gates can be designed with few simple circuits and they can improve power consumption, chip area, and speed of operation.

Technical comparison between superconductive RSFQ logic circuits and silicon CMOS digital logics (초전도 디지털 RSFQ 논리회로와 실리콘 CMOS 회로와의 기술적 비교)

  • Cho, W.;Moon, G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.26-28
    • /
    • 2006
  • The development technique of digital logic using CMOS device is close reached several limitations These make technical needs that are ultra high speed superconductive systems based on CMOS silicon digital computing technique. Comparing digital logic based on silicon CMOS, the computing technique based on ultra high speed superconductive systems has many advantages which are ultra low power consumption, ultra high operation speed. etc. It is estimated that features like these increasingly improve the possibility of ultra low power and ultra superconductive systems. In this paper digital logics of current CMOS technique and RSFQ superconductive technique are compared with and analyzed.

Design and implementation of a base station modulator ASIC for CDMA cellular system (CDMA 이동통신 시스템용 기지국 변조기 ASIC 설계 및 구현)

  • Kang, In;Hyun, Jin-Il;Cha, Jin-Jong;Kim, Kyung-Soo
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.2
    • /
    • pp.1-11
    • /
    • 1997
  • We developed a base station modulator ASIC for CDMA digital cellular system. In CDMA digital cellular system, the modulation is performed by convolutional encoding and QPSK with spread spectrum. The function blocks of base station modulator are CRC, convolutional encoder, interleaver pseudo-moise scrambler, power control bit puncturing, walsh cover, QPSK, gain controller, combiner and multiplexer. Each function block was designed by the logic synthesis of VHDL codes. The VHDL code was described at register transfer level and the size of code is about 8,000 lines. The circuit simulation and logic simulation were performed by COMPASS tools. The chip (ES-C2212B CMB) contains 25,205 gates and 3 Kbit SRAM, and its chip size is 5.25 mm * 5,45 mm in 0.8 mm CMOS cell-based design technology. It is packaged in 68 pin PLCC and the power dissipation at 10MHz is 300 mW at 5V. The ASIC has been fully tested and successfully working on the CDMA base station system.

  • PDF

Performance Evaluation of Symbol Timing Algorithm for QPSK Modulation Technique in Digital Receiver (QPSK변조기법을 위한 Digital 수신기의 심볼동기 알고리즘 성능평가)

  • 송재철;고성찬;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.11
    • /
    • pp.1299-1310
    • /
    • 1992
  • Recently, digital realizations of timing recovery circuits for digital data transmission are of growing interest. As a result of digital realization of timing recovery circuits, new digital algorithms for timing error detection are required. In this paper, we present a new digital Angular Form(AF) algorithm which can be directly applied to QPSK modulation technique. AF algorithm is basically developed on the concepts of detected angle form and transition logic table. We evaluated the performance of this algorithm by Monte-Carlo simulation method under Gaussian and Impulsive noise environments. From the performance evaluation result, we show that the performance of AF Algorithm is better than that of Gardner in BER, RMS jitter, S-curve.

  • PDF

Implementation of a Web-based Virtual Laboratory System for Digital Logic Circuits Using Online Schematic Mapping (온라인 설계 맵핑을 이용한 웹 기반 디지털 논리 회로 가상 실험 시스템의 구현)

  • Kim Dong-Sik;Seo Sam-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.558-563
    • /
    • 2005
  • In this paper, we implemented a web-based virtual laboratory system(VLab system) with creative and interactive multimedia contents, which can be used to enhance the quality of education in the area of digital logic circuits. Since the proposed VLab system is implemented to describe the on-campus laboratory, the learners can obtain similar experimental data through it. Also, the VLab system is designed to increase the learning and teaching efficiencies of both the learners and the educators, respectively. The learners will be able to achieve high teaming standard and the educators save their time and labor. The virtual experiments on our VLab system are performed according to the following procedure: (1) Circuit composition on the virtual bread board (2). Applying input voltage (3) Output measurements (4) Checkout of experiment results. Furthermore, the circuit composition on the virtual bread board and its corresponding online schematic diagram are displayed together on the VLab system for the learner's convenience. Finally, we have obtained several affirmative effects such as reducing the total experimental hours and the damage rate for experimental equipments and increasing learning efficiencies as well as faculty productivity.

Implementation of An Interactive Web-based Virtual Laboratory For Digital Logic Circuits (상호작용적인 웹기반 디지털 논리회로 가상실험실의 구현)

  • Kim, Dong-Sik;Seo, Ho-Joon;Seo, Sam-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2622-2624
    • /
    • 2002
  • This paper presents a virtual laboratory system which can be creating efficiencies in the learning process. The proposed virtual laboratory system for digital logic circuits provides interactive learning environment under which the multimedia capabilities of world-wide web can be enhanced. The virtual laboratory system is implemented to describe the on-campus laboratory, the learners can obtain similar experimental data through it. The virtual laboratory system is composed of four important components: principle classroom simulation classroom, virtual experiment classroom and management system. The database connectivity is made by PHP and the virtual laboratory environment is set up slightly differently for each learner. Learning efficiencies as well as faculty productivity are increased in this innovative teaching and learning environment.

  • PDF

Simulations and Circuit Layouts of HTS Rapid Single Flux Quantum 1-bit A/D Converter by using XIC Tools (XIC tools을 사용한 고온 초전도 Rapid Single Flux Quantum 1-bit A/D Converter의 Simulation과 회로 Layout)

  • 남두우;홍희송;정구락;강준희
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.131-134
    • /
    • 2002
  • In this work, we have developed a systematic way of utilizing the basic design tools for superconductive electronics. This include WRSPICE, XIC, margin program, and L-meter. Since the high performance analog-to- digital converter can be built with Rapid Single Flux Quantum (RSFQ) logic circuits the development of superconductive analog-to-digital converter has attracted a lot of interests as one of the most prospective area of the application of Josephson Junction technology. One of the main advantages in using Rapid Single Flux Quantum logic in the analog-to-digital converter is the low voltage output from the Josephson junction switching, and hence the high resolution. To design an 1-bit analog-digital converter, first we have used XIC tool to compose a circuit schematic, and then studied the operational principle of the circuit with WRSPICE tool. Through this process, we obtained the proper circuit diagram of an 1-bit analog-digital converter circuit. Based on this circuit we performed margin calculations of the designed circuits and optimized circuit parameters. The optimized circuit was laid out as a mask drawing. Inductance values of the circuit layout were calculated with L-meter. Circuit inductors were adjusted according to these calculations and the final layout was obtained.

  • PDF