• Title/Summary/Keyword: Diffraction of waves

Search Result 241, Processing Time 0.025 seconds

Isolation of the Open and Infilled Trenches for the Surface-Waves Induced by the Traffic Loads (교통하중에 의한 지반진동의 차단에 관한 연구)

  • Lee, Phil-Kyu;Kim, Moon-Kyum;Kwon, Hyung-Oh
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1900-1906
    • /
    • 2000
  • In this study, the vibration screening effectiveness of barriers which can isolate structures from ground-transmitted vibration generated by harmonic forces is performed. For high frequencies, the vibration screening effectiveness of barriers is analyzed from field tests, and compared with the results from numerical analyses using a commercial program, ANSYS. Using these numerical analysis procedures, the effectiveness for vibration with various low frequencies is predicted. The frequency analysis tests of surface waves are performed in order to estimate the dynamic material properties of soil for 100 Hz, 150 Hz, 200 Hz, and 250 Hz. Three-dimensional solid elements are used in order to consider the diffraction of waves in all directions. Spring-damper combination elements are used in order to avoid the reflection of waves on the boundary. The results of numerical analysis agree with those of field tests. From the results of this numerical analyses, the reduction of vibration for low frequencies induced by the traffic loads can be predicted.

  • PDF

Effect of Wave Focusing Structures in Combined Waves and a Current (파랑과 흐름의 혼합하에서 파랑집적구조물의 영향)

  • Lee, J.W.;Cheung, K.F.
    • Journal of Korean Port Research
    • /
    • v.8 no.2
    • /
    • pp.67-77
    • /
    • 1994
  • A time-domain numerical model is developed to examine the performance of a wave energy focusing structure in combined waves and a current. With the current assumed to be slow and the structure fully submerged, the wave-current interaction problem is reduced to a wave scattering problem in a uniform current. The diffraction of incident waves around a narrow berm is considered. The shape of the berm is defined by a parabola, imitating that of an optical reflector. The energy focus is achieved by reflecting the incident waves through a predetermined focal point. Through the numerical simulations, the numerical model is shown to be effective in modeling the wave-current interaction problem, and the current speed and direction are shown to affect significantly the location, amplitude and sharpness of the focus.

  • PDF

On the Calculation of Added Resistance of a Ship by Maruo′s Formula (Maruo 공식에 의한 부가저항 계산에 대한 소고)

  • 홍도천;홍사영;김은찬
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.202-207
    • /
    • 2001
  • The added resistance of a ship advancing in waves can be split into the resistance due to the radiation wave and the resistance due to the diffraction wave. In this study, the former has been calculated by a method based on Maruo's formula. The latter must be calculated by other methods. Ship motion is calculated by the usual strip method. The amplitude of two dimensional far-field waves is calculated using the improved Green integral equation. The present numerical method can be used for the estimation of the added resistance due to the radiation wave since the present numerical result is much smaller than other existing numerical results considered to be overestimated.

  • PDF

Analysis of cross-talk effects in volume holographic interconnections using perturbative integral expansion method

  • Jin, Sang-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.58-63
    • /
    • 1998
  • Cross-talk effects in high-density volume holographic interconnections are investigated using perturbative iteration method of the integral form of Maxwell's wave equation. In this method, the paraxial approximation and negligence of backward scattering introduced in conventional coupled mode theory is not assumed. Interaction geometries consisting of non-coplanar light waves and multiple index gratings are studied. Arbitrary light polarization is considered. Systematic analysis of cross-talk effects due to multiple index gratings is performed in increasing level of diffraction orders corresponding to successive iterations. Some numerical examples are given for first and third order diffraction.

Derivation of Nonlinear Mild-Slope Equation and Numerical Simulation (비선형 완경사 방정식의 유도 및 수치모의)

  • Lee, Jung-Lyul;Park, Chan-Sung
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 2000.09a
    • /
    • pp.103-112
    • /
    • 2000
  • Early efforts to model wave transformation from offshore to inshore were based on the ray theory which accounts for wave refraction due to changes in bathymetry and the diffraction effects were ignored. Prediction of nearshore waves with the combined effects of refraction and diffraction as well as reflection has taken a new dimension with the use of the mild-slope equation and the Boussinesq equation. (omitted)

  • PDF

Effects of Stem Wave on the Vertical Breakwater (해안구조물 전면의 Stem Wave 특성에 관한 연구)

  • 박효봉;윤한삼;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.138-143
    • /
    • 2001
  • Based on mild slope equation and parabolic approximation the forward diffraction of monochromatic waves by a straight breakwater are studied numerically. The characteristics and effects of stem wave along breakwater and the relations between the stem wave and incident wave angle are discussed.

  • PDF

Resonance Scattering Characteristics of Multi-layered Dielectric Gratings under Conical Incidence (원추형 입사에서 다층 유전체 격자구조의 공진 산란특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.123-128
    • /
    • 2022
  • Applying rigorous modal transmission-line theory (MTLT), the properties of resonant diffraction gratings under conical light incidence is investigated. The mode vectors pertinent to resonant diffraction under conical mounting vary less with incident angle than those associated with diffraction gratings in classical mounting. Furthermore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, the conical mounting imbues diffraction gratings with larger angular tolerance than their classical counterparts. Based on these concepts, the angular-spectral and wavelength-spectral performance of resonant diffraction gratings in conical and classical mounts by numerical calculations with spectra found for conical incidence are quantified. These results will be useful in various applications demanding resonant diffraction gratings that are efficient and physically sparse.

A Diffraction Transfer Function Approach to the Calculation of the Transient Field of Acoustic Radiators

  • Lee, Chan-Kil
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 1994
  • A computationally-efficient approach to the calculation of the transient field of an acoustic radiator was developed. With this approach, a planar or curved source, radiating either continuous or pulsed waves, is divided into a finite number of shifted and/or rotated versions of an incremental source such that the Fraunhofer approximation holds at each field point. The acoustic field from the incremental source is given by a 2-D spatial Fourier transform. The diffraction transfer function of the entire source can be expressed as a sum of Fraunhofer diffraction pattern of the incremental sources with the appropriate coordinate transformations for the particular geometry of the radiator. For a given spectrum of radiator velocity, the transient field can be computed directly in the frequency domain using the diffraction transfer function. To determine the accuracy of the proposed approach, the impulse response was derived using the inverse Fourier transform. The results obtained agree well with published data obtained using the impulse response approach. The computational efficiency of the proposed method compares favorably to those of the point source method and the impulse response approach.

  • PDF

Deformation of Non-linear Dispersive Wave over the Submerged Structure (해저구조물에 대한 비선형분산파의 변형)

  • Park, D.J.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.75-86
    • /
    • 1998
  • To design a coastal structure in the nearshore region, engineers must have means to estimate wave climate. Waves, approaching the surf zone from offshore, experience changes caused by combined effects of bathymetric variations, interference of man-made structure, and nonlinear interactions among wave trains. This paper has attempted to find out the effects of two of the more subtle phenomena involving nonlinear shallow water waves, amplitude dispersion and secondary wave generation. Boussinesq-type equations can be used to model the nonlinear transformation of surface waves in shallow water due to effect of shoaling, refraction, diffraction, and reflection. In this paper, generalized Boussinesq equations under the complex bottom condition is derived using the depth averaged velocity with the series expansion of the velocity potential as a product of powers of the depth of flow. A time stepping finite difference method is used to solve the derived equation. Numerical results are compared to hydraulic model results. The result with the non-linear dispersive wave equation can describe an interesting transformation a sinusoidal wave to one with a cnoidal aspect of a rapid degradation into modulated high frequency waves and transient secondary waves in an intermediate region. The amplitude dispersion of the primary wave crest results in a convex wave front after passing through the shoal and the secondary waves generated by the shoal diffracted in a radial manner into surrounding waters.

  • PDF

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Seung;Jeon, Min-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.619-627
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. We also considered the increase of water depth at the entrance channel by dredging work up to 15 meters depth in order to see the dredging effect. Among several model analyses, the nonlinear and breaking wave conditions are showed the most applicable results. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.