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Derivation of Nonlinear Mild-Slope Equation and Numerical Simulation
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1. INTRODUCTION

Early efforts to model wave transformation from
offshore to inshore were based on the ray theory
which accounts for wave refraction due to changes
in bathymetry and the diffraction effects were
ignored. Prediction of nearshore waves with the
combined effects of refraction and diffraction as
well as reflection has taken a new dimension with
the use of the mild-slope equation and the
Boussinesq equation. These two approaches in
predicting nonlinear waves are essentially different
in the sense that one is based on the linear wave
characteristics and the other was started as an
extensive work of the nonlinear shallow water
waves.

1.1 Mild-Slope Equation Type

The mild-slope equation developed by Berkhoff
(1972) has not only been used in its original form of
an elliptic equation but also provided the basic
governing equation for the development of other
wave equations such as the parabolic equation
(Radder, 1979), hyperbolic equation (Smith and
Sprinks, 1975; Copeland, 1985; Madsen and Larsen,
1987), and elliptic equation of phase averaged type
(Ebersole et al., 1986).

Chamberlain and Porter (1995) proposed a
modified mild slope equation that includes the
higher-order bottom effect terms as well as the
evanescent modes. As an effort towards modeling
the propagation of nonlinear waves, recently several
time-dependent mild slope equations have also been
developed by Lee (1994a), Nadaoka et al. (1994),
and Isobe (1994).

1.1.1 Modified Mild Slope Equation
The modified mild-slope equation (Chamberlain
and Porter, 1995) can be written as

V(CCg-V&)+kZCCg(1+R);s =0 (1)

where C and Cg are the local phase speed and the
group velocity, respectively, g the gravitational
acceleration, & the wave number, and (x.y) the
velocity potential at the mean water level. Equation
(1) coincides with the familiar mild-slope equation
if the term R is omitted. The retention of R widens
the scope of Eq. (1), which is referred to as the
modified mild-slope equation. The most simplified
expression of R is given by Chamberlain and
Porter(1995) as
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where
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Here n is the ratio of the group velocity Cg to the

phase speed C, and the R, and R, are the
dimensionless functions representing the effects of
the bottom curvature and of the square of bottom
slope, respectively. It is notable that R, approaches
to —1/6 in the extremely shallow water.

1.1.2 Nonlinear Version
Lee’s Equation

Lee (1994a) presented an equation set of
nonlinear model for regular waves which can be
applied to waves traveling from deep to shallow
water.
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where 77 is the free surface displacement, u the

horizontal velocity vector defined at the free surface
level, n the ratio of the group velocity Cg to the
phase speed C, and as the dispersion relationship
o’ = gktanh kh is employed. The above equations
completely satisfy the linear dispersion relationship
and when expanded, they were proven to be
consistent with Boussinesq equation of several
types; Peregrine (1967), Madsen et al. (1991), and
Nwogu (1993). In addition, the position of averaged
velocity below the still water level was estimated
based on the linear wave theory. For irregular waves,
the following equation expressed in the alternative
form of Smith and Sprinks (1975) instead of Eq. (3)
is suggested.
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Nadaoka's Equation
Nadaoka et al. (1994) derived a time-dependent

nonlinear dispersive wave equation with the
multi-term coupling technique, which are here given
in the single-term representation as
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where u, (u,v) is the two-dimensional horizontal
velocity vector and w, the vertical velocity. The

subscript ‘0’ denotes the value defined at the mean
water level. The vertical velocity, w, was given as

W, = V. tanh kh u, )
k

The C, Cg, and £ are respectively the phase and the

group velocity, and the wave number which are

obtained by the linear dispersion relationship under

the prescribed incident frequency o and local depth

h.

Isobe’s Equation
Isobe (1994) also derived nonlinear mild-slope

equation as given below by expanding the velocity
potential into a series in terms of a given set of
vertical distribution functions and hence include full
nonlinearity and full dispersivity.
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The unknowns are 7 and ;ﬁa (a =1 to N). The
vertical distribution of the velocity potential, ¢, is
expressed as a series in terms of a set of vertical
distribution functions, f, :

zh(x))=4,f, (D)

where ;ﬁa is the coefficient to f, and therefore
independent of z, and x=(x,y) denotes the
position vector on the horizontal plane. The f, is
expressed in the terms of the local water depth
h(x) as is normally the case. It was also shown that

nonlinear shallow water equations and Boussinesq
equations as well as mild-slope equation can be
derived as special cases of the nonlinear mild-slope
equations.

As the most simple case, Egs. (9) and (10) can be
expressed by the single component as follows.
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If we assume f(z)= coshk(h+z)/cosh khand

A=CCglg and B=(c'-kCCg)/g . Assuming
f"=1, we obtain
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Therefore, the above can be consistent with Lee
(1994)’s equation in single component expression.

1.2 Boussinesq Equation Type

The classical Boussinesq equations for
one-dimensional propagation were first presented
by Boussinesq(1872, 1877) and later the equations

were extended to two-dimensional propagation over
mildly sloping bottoms by Peregrine(1967). The
Boussinesq type equations are known to simulate
the combined effects of nonlinear short wave
phenomena in shallow water areas quite well. Their
major restriction, however, is to incorporate only
weak dispersion and weak nonlinearity. Generally,
the weak dispersion is more critical restriction as it
directly affects the accuracy of both wave celerity
and group velocity which is crucial for most wave
dynamics. This problem has attracted considerable
attention in the last 10 years. Numerous other
formulations, therefore, have been developed to
improve dispersion characteristics.

2. NONLINEAR VERSION OF MILD-SLOPE
EQUATION

2.1 Derivation

The nonlinear mild-slope equation will be
derived directly from the continuity equations by
using the Galerkin’s method. The continuity
equations of an incompressible fluid are given by

v+ oo (16)

oz

where u, w are the horizontal velocity and vertical
velocity components, respectively. A bold face
symbol indicates two horizontal components of flow
vector; w=(u,v). The two-dimensional gradient

operator (8/8x, 0/dy) , is denoted by V . We
multiply f (z) to Eq. (16), and integrate from the
bottom to the free surface.

fth-udz+fhf%dz

- th-(fu)dz—fthfdz—f( f) dz  (17)
r O

+[ 2z =0

where, 7 is the free surface displacement and u is
given by V¢ in terms of velocity potential. For the

slowly varying water depth, the wave part of the
velocity potential may be written as

#(x,2,1) = f(2)P(x,1) (18)

where, f(z) =cosh k(h+z) /cosh kh is a slowly
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varying function of x and ¢3 denotes the velocity

potential at the mean water level, termed as 'the
surface potential'. Recall Leibnitz's rule

V. J;fdz=J;V-fdz+f[ﬂVﬂ—f|aVa
to obtain the following expression from Eq. (17).

V. fh Vg - fh(gjz dp-[Vn- fu],
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(19)

Taking Taylor expansion about 7=0 to Eq.
(19),
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Substituting the kinematic boundary conditions at

free surface( z = 77 ) and at bottom( z = -/ ) into Eq.
(20),
on
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and obtain following equation:
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Differentiating by the variable ¢:
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where C, Cg, o and k are assumed to be time

independent. Substituting the dynamic free surface
boundary condition,
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and assuming the last terms in Eq. (24) and (25),
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respectively and then yield following equation:
2
(2

(28)

The above equation is combined with the
nonlinear momentum equation defined at the free
surface.
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Taking Taylor expansion about 77 =0,
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shown in the nonlinear term and then finally we



obtain the following momentum equation:

ou on
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Therefore, Eqs. (28) and (32) are a set of the
governing equations used for nonlinear wave
propagation in this study. We used the Miche's
criterion (Miche, 1951) because the breaking wave
model is simple and accurate enough, and
guarantees stability. For the mass conservation, the
broken mass due to wave breaking is consequently
passed on the next step elevation at each grid.

2.2 Single Component Model
Combining Egs. (28) and (32), yields
& o _y.

2 2 0
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In order to eliminate the velocity components
except 77, the following approximate relations are

applied.
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For the asymptotic analysis, the above is
re-expressed as
2 2,,2
9n _ylfey gn+ &1 l+§tanh2kh)
or g ct 2 2

kZCZ(l—n) g7 (1 ]
Vipt-| ———~ +=tanh? kh
+gv'n ‘: 2 gn+ P (2 >

~2gk” tanh? ki
(35)

107

We shall now consider the special forms of Eq. (35)
when depth is relatively shallow and deep. In the

very shallow water so that C=Cg= \/EE and
tanh® kh = 0, Eq. (35) becomes

a'n
o =8V V)

[hV”h )+ gVin® (36)
which may be shown to be the combined form of
Airy(1845)’s non-dispersive nonlinear wave
equations for varying depth, correct the
second-order in nonlinearity.

Next, the phase speed and the group velocity are
given in lowest-order dispersion as

C=\Jgh(1-k*h*/6) and Cg=[gh(1-k*/2)

Replacing them should result in the combined
version of Boussinesq equation.
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Retaining the leading order,
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For the constant depth, invoking the relation

kn=-V,
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which is in accordance with the classical Boussinesq
approximations.

For the deep water of constant depth, C = \/g/k
and Cg=C/2. In this case, Eq. (35) can be
approximated as

(40)

with k’p* = -V’ /4 based on the Stokes wave

theory.

If Eq. (33) is linearized, the time-dependent
mild-slope equation proposed by Smith and Sprinks
(1975) is obtained as

2

n
aT—V.[CCqu]+[az -kCCgln=0 (1)

2.3 Numerical Analysis

The governing equations (28) and (32) are similar
form to a set of the shallow water equations. They
are solved here by using a fractional step method in
conjunction with the approximate factorization
techniques leading to the implicit finite difference
schemes. Since the time step of an explicit scheme is
limited by the Courant-Friedrichs-Lawy (CFL)
condition, it is advisable to reduce the number of
time steps by use of an implicit scheme. A fraction
step method is based on the recognition that the
physical phenomena of water flow are represented
by superimposing individual operations as Chorin
(1968) pointed out. Therefore, the momentum
equations, which have the nonlinear advective term,
are divided into the two elementary operations;
advection and propagation, and solved by using a
fractional step method.

3. PHYSICAL EXPERIMENTS

The experiment was conducted in a
Coastal-Hydraulics Laboratory wave flume of
Sungkyunkwan University, in order to verify the
numerical results of nonlinear waves. The wave
flume of 50 cm deep, 40 cm wide, and 12 m long
consists of a wave generator and beach zones. The
bottom and side walls of the flume are glass to allow
easy optical access. The regular waves were
generated by a piston-type wave paddle and the
beach slope of 1/19 was set at the other end of the
wave flume.

The wave flume was decorated with the data
acquisition system accessing the wave profile
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signals from the wave gages. Gages were connected
with amplifier for increasing analog signals. Then
the DaqBoard 100A (DaqBoard), A/D converter,
changes conditioned signals into corresponding
digital numbers saved as ASCII format.

Physical experiments were accomplished for two
cases. Experimental conditions consist of same
wave conditions for two different experimental
setup, respectively. Wave conditions for Case 1-A
and Case 2-A are 7=0.8sec, Hi= 2cm, Ur=10.05 and
steepness= 0.0282. Wave conditions for Case 1-B
and Case 2-B are 7=1.0sec, Hi= 1.5¢cm, Ur=12.80
and steepness= 0.0162. The Ursell parameter is a
dimensionless parameter that is useful to define the
range of application of the various wave theories.
Generally cnoidal theory is applicable for Ur > 25
and Stokes theory is applicable for Ur < 10.

The layouts of two different experimental
configurations are illustrated in Figs. 1 and 2 with
the locations of the measurement stations and
detailed geometry of the flume. The exposed
breakwater is placed to the left half of the wave tank
looking in the direction of the wave propagation,
while the submerged breakwater is placed to the left
side.

As shown in Fig. 1, wave gages 1, 2 and 3 for
Case 1 were located at x=4lcm, x=81cm and
x=121cm measured shoreward from the toe of slope,
respectively. The measuring section was located
about 10.5 cm apart from the nearer sidewall.

As for the submerged breakwater shown in Fig. 2.
wave gages 1, 2 and 3 were located at x=-12.5¢cnm,
x=0cm (center) and x=21cm measured shoreward
from the center of submerged breakwater,
respectively. The squared submerged breakwater is
impermeable and has 1.1 cm height and 15 cm
length.

4. RESULTS

Figures 3 and 4 show a comparison between the
observed and calculated temporal wave profiles for
Case 1. The time series were synchronized with the
computations at station 1. The measured results are
also shown in each figure by closed circles. The
agreement appears to be generally acceptable,
though it is evident that both results show the weak
irregularity. In Case 1-A, the waves measured at
stations 2 and 3 show the strong asymmetry due to
nonlinearity as we expected. While several peaks in
a period are shown in Case 1-B experiments,
differently from the numerical prediction. Judging
from the detailed experiments using a moving cart,
they seemed to be caused by reflection of



asymmetric waves (radiating from a breakwater)
rather than the wave decomposition. Such
multi-peaks can occur under wave decomposition.
The wave decomposition s usually caused by a
nonlinear wave train passing over a submerged bar
or a submerged shelf. In this case, however, there is
no submerged shelf but a breakwater causes the
strong reflection. Figures 5 and 6 show the 3-D
perspective views of instantaneous water surface
elevation for two different wave conditions obtained
from the numerical model. In those figures, the
wave diffraction is shown behind a breakwater.

Figures 7 and 8 give the comparison of temporal
wave profiles for Case 2. The numerical results are
in good agreement with those of the observed data.
Figures 9 and 10 show the 3-D views of
instantaneous water surface elevation for two
different wave conditions obtained from the
numerical model, 1t is shown in Figs. 9 and 10 that
wave profiles are deformed aver the submerged
breakwater section. The submerged breakwater
seems to cause neither the strong wave
decomposition nor predominant multi-peaks
because its height is relatively thin.

5. CONCLUSION

The nonlinear mild-slope equation was derived
directly from the continuity equation by using the
Galerkin’s method. In modeling breaking waves we
employed the Miche's criterion which believed to be
simple, stable, and reliable.

We verified nonlinear wave model capacity
through comparison of numerical simulation to
physical experiments for two configurations; the
exposed breakwater and the submerged breakwater.
The overall agreement appeared for the exposed
breakwater, though it is evident that the weak
irregularity in experimental data measurements
showed. The waves showed strong asymmetry due
to nonlinearity and multi-peaks due to reflection of
nonlinear waves. Such phenomena might increase
with Ursell parameter increasing.

In the submerged breakwater, the best agreement
was shown. Wave profiles appeared to be deformed
due to a submerged breakwater. However, neither
wave decomposition nor multi-peaks seems to be
strongly observed in the case of the submerged
breakwater because its height is relatively thin.
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