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Cross-talk effects in high-density volume holographic interconnections are investigated using
perturbative iteration method of the integral forra of Maxwell’s wave equation. In this method, the
paraxial approximation and negligence of backward scattering introduced in conventional coupled
mode theory is not assumed. Interaction geometries consisting of non-coplanar light waves and
multiple index gratings are studied. Arbitrary light polarization is considered. Systematic analysis
of cross-talk effects due to multiple index gratings is performed in increasing level of diffraction
orders corresponding to successive iterations. Sorne numerical examples are given for first and third

order diffraction.

I. INTRODUCTION

Optical interconnection elements can potentially act
as a powerful alternative to electrical wiring in neu-
ral network implementation because photons lack the
interactive nature of electrons. As a result, photonic
interconnections offer minimal signal deterioration, im-
munity to parasitic loading, and insensitivity to elec-
tromagnetic interference(EMI), among other advan-
tages. However, the low capacity of thin hologram
interconnections can be a severe problem if a global
interconnection is needed between a very large num-
ber of input and output pixels in the case of associa-
tive memory and learning neural networks. To over-
come the shortcomings of conventional interconnection
methods, a volume holographic interconnection scheme
has been proposed{1,2]. This scheme is based on stor-
ing one grating distributed in the whole volume for
every pair of input and output pixels as shown in Fig.
1. The volume holographic interconnections exploit
the third spatial dimension by using angular selectiv-
ity to store the interconnection patterns. The poten-
tial for a dramatic increase in the storage capacity of-
fered by volume holograms was recognized early on by
Van Heerden[3]. To ensure independent interconnects,
cross-talk effects have been investigated by using a sim-
ple coupled mode theory[4-6]. The first order cross-
talk effect has been minimized by eliminating identical
redundant gratings between input and output pixels,
and a specific input and output pattern was devised to
minimize the first order cross-talk effect[2]. The noise
of the volume holographic interconnections was iden-

tified as coming from third order diffraction[2]. The
explicit formula for the signal-to -noise ratio was ob-
tained by using a simple coupled mode theory under
the assumption of isotropic and coplanar light diffrac-
tion from superposed volume gratings[2]. However, in
a real situation, anisotropic light diffraction from non-
coplanar superposed volume gratings should be con-
sidered to analyze the cross-talk effects.

In this paper, we use a rigorous method of pertur-
bative integral expansion to study cross-talk effects in
superposed volume gratings. This method can be ap-
plied to an arbitrary interaction geometry of optical
waves and volume index gratings. It also accounts for
backward as well as forward diffraction simultaneously.
In section II, a brief summary of the perturbative in-
tegral expansion method is introduced. In section III,
cross-talk effects of the first, second , and the third
level diffraction are analyzed. Some numerical results
are presented in section IV. Finally, conclusions are
described.

II. GENERAL FORMULA OF MULTIPLE
LIGHT DIFFRACTION

A brief summary of the perturbative integral ex-
pansion method as applied to the wave diffraction by
multiple gratings is presented. The interaction geom-
etry between light waves and volume gratings is con-
sists of an infinite slab bounded by z = 0 and z =
d. Anisotropic host materials and anisotropic volume
index gratings are considered in general. The macro-

— 58 —



Analysis of cross-talk effects in volume hologra- - - -—Sang Kyu Jin 59

INPUT
PLANE

OUTPUT
PLANE

VOLUME HOLOGRAM

REFERENCE

PLANE

FIG. 1. Diagram showing volume holographic intercon-
nection between input pixel i and output pixel p. To make
the interconnection, a grating generated by interfering light
waves emanating from pixels i and p’ is stored and read by
the light coming from the pixel i .

scopic polarization is given by
P(r,t) = eoxE(r,t) + €0v(r)E(r, 1), (1)

where ¢g is the permittivity of the vacuum, ¥x
is the susceptibility tensor of the anisotropic host
material.y(r) is a second rank tensor describing the
perturbation caused by anisotropic volume gratings,
and thus it is zero outside the slab. In the case of
multiplexed volume gratings, the perturbation ¥(r)
consists of a sum of sinusoidal refractive index grat-
ings. Maxwell’s wave equation for monochromatic light
waves with frequency w in MKS units reads

(v? — graddiv + k2e)E = ~k2+E, (2)

where e = 1+x and kg = w/c. We assumed that the
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fq(8,) for ¢ > 1 in Eq.(8) is obtained by using the
following formulas:
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material is non magnetic and there is no free charge.
Defining a Green’s function for Eq.(2) as

(v? — graddiv + kje)g(r,r') = ~18(r — 1), (3)

where I is a unit matrix and g is a second rank tensor,
then, the integral representation of Eq.(2) is given by

E(r) = Epexp[ik - r] + k3 / dr'g(r, v )y(cYE(I"), (4)

where r’ denotes the secondary source position vec-
tor which ranges over all the points inside the slab. If
we iterate Eq.(4), we obtain the perturbative integral
expansion

o0

E(r) = Y EM(r), (9)

n=0

where E(© is the incident plane wave, and an indi-
vidual diffracted component at the n-th level is given
by [7.8]
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where gq(ﬂq)=fq(5q)ezp(ikqu) for all q, (11)

{ fi(B) = 1 for 8 =a,b 12)
fi(B1) = exp(—iprd) for By = ¢, d,
d
mr= I @ -, (13)
Be=a,8:#0;
B _ . B 8; !
P].J :ujJ—ka:ujJ_(kZ+ZKtz), (14)
t=1
K = kol + kjy i+ 0’ 2, (15)
A(k?{b) = Ad(knza kny,u;’,‘b)an. (16)

Then, Fourier representation G(q) of the Green’s
function g(rr’) in Eq.(3) can be written as
Ad(q)/D{q), where D(q) and Ad(q) are determinant
and adjoint matrix respectively. Now, D(q) and
Ad;;(q) in the coordinate system where dielectric ten-
sor € is diagonalized are given by [8]

D(q) = kglg? + (@3 + ¢2) — ko€as)
x[e22q7 + €22 (g3 + q;) - kgemeu], (17)

Advy = ¢2(q2 — k3ez2) + (45 + qf — kge2) (2 — K3exs),
Adiz = ¢oqy (@2 + @5 + ¢ — kjez2),
Adis = q2q:(q? + @3 + g — kgcaz),
Adyy = ¢2(q; — kbezz) + (@2 + ¢) — kiez2) (@) — koeca),
Adys = qyq:(q> + @2 + g5 — k3€zz),
Adss = (@2 — kgeae) (@ + @ + @5 — koEaa), (18)

where, Ad is symmetric. It is well known that D(q)
is a polynomial of order four if q, as shown in Eq.(17)
and D(q)=0 describes two wave normal surface[8]. The
four poles of D(q) become real when q is on the wave
normal surface. In particular, two poles of D(q) are
positive describing eigenmodes propagating in the pos-
itive z-direction. The other two are negative and they
represent eigenmodes propagating in the negative z-
direction. Otherwise, the poles are complex. The two
poles in the upper complex plane are denoted as u?
and u®, and the other two in the lower complex plane
are denoted as u® and ud. Thus, k?,k° k¢ and k¢ in
Eq.(6) mean the diffracted wave vectors that repre-
sent ordinary wave propagating positive z direction,
extraordinary wave propagating positive z direction,
extraordinary wave propagating negative z direction
and ordinary wave propagating negative z direction,

respectively for positive uniaxial crystal. We may
call p?,p? p® and p? phase matching term because
[1 — e~iP*d/P**] in Eq.(19) represent sinc function
with respect to the variables P®®. This implies that
P! * are the same as the phase matching function in the
conventional coupled mode theory[5]. K;, in Eq.(14)
represents volume grating vector and a,, in Eq.(16) is a
second rank tensor that represents the volume grating
magnitude.

III. CROSS-TALK EFFECTS ANALYSIS

The formula presented in the above section is used
to study various cross-talk effects arising from light
diffraction from superposed volume gratings. In par-
ticular, the interconnection pattern of the input and
output pixels shown in Fig. 2 is considered. The first
order diffraction formula will justify the selection of
the input and output pixels shown in Fig. 2 and it
will also give the amplitude of the signal of each inter-
connection. Second order cross-talk is also considered.
However, in a real situation, the second order cross-
talk can be eliminated by choosing a specific medium
and it will be explained. Finally, the third order cross-
talk which yields the signal-to-noise ratio of the volume
holographic interconnections will be considered.

III. A. First order cross-talk

Consider an input pixel i shown in Fig. 1. There
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FIG. 2. A specific arrangement of input and output pix-
els on 9x9 rectangular grids which eliminates the first level
cross-talk effect. Large dots on the input and output plane
represent light sources and photodetectors, respectively.
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are N* total gratings representing the interconnection
pattern, where N is the total number of input and out-
put pixels used. The plane wave emanating from that
pixel will interact with N? gratings and the diffrac-
tion is described by the general formula derived in the
above section. In the first level diffraction, it has been
shown that the light wave interacts with each grating
as if there is only one grating. Thus, there is no mixing
due to multiple gratings. In Fig. 1, the input pixel i is
interconnected to every output pixel by N gratings and
each of these N gratings yields the signal of the particu-
lar interconnection. Furthermore, the diffraction which
yields the signal satisfies the Bragg condition exactly.
Thus, using the general formular, the amplitude of the
signal of each interconnection is given by

1 Ak®) 1—eiP"d
1 Alg) S Eoezp(iky® - r)

Bap(r) = -

Ez2 T'b Pla’b
id A(k™?
= —-‘;——(-—;{B—)Egexp(ik'f'b -1), (19)
2z

1

where the exact Bragg condition P}' ® = 0 was used and
the appropriate limit was taken. The amplitude of the
signal depends on the light polarization, the anisotropy
of the host material and gratings, the light propagation
direction, and the arrangement of the gratings rela-
tive to the lights. All of these factors are reflected
in Eq.(19). It is well known that if an input pixel
i’ is in the same horizontal line as the input pixel i in
Fig. 1(i.e. x-direction), the grating generated by a pair
of pixels i’ and p’ yields extremely small magnitudes
of phase mismatching when the light coming from in-
put pixel i interacts with this grating. Thus, the light
wave emanating from the pixel i interacts with these
gratings very strongly and the amplitude is almost the
same as that of Eq.(19). However, to ensure indepen-
dent interconnections, these gratings should be ineffec-
tive. The specific pattern shown in Fig. 2 was chosen
to ensure that the diffracted output waves from these
gratings do not propagate to the used output pixels
and thus, they are ineffective. The propagation direc-
tion from a single grating is given by Eq.(15) and it
depends only on the x and y components of the light
and grating wave vectors. This shows that indeed the
selection of the input and output pixels in Fig. 2 elim-
inates the problem caused by the gratings in the hor-
izontal direction. Then, if an input pixel i’ is in the
same vertical line as the input pixel i in Fig. 1(i.e.
y-direction), the grating generated by a pair of pixels
i’ and p’ yields large magnitudes of phase mismatch-
ing when the angular separation between the pixel i
and i’ is large. The result is the well known angular
selectivity of volume gratings. The magnitude of the
diffracted light waves from these gratings follows from
Eq.(19) as |E‘(11’,),(r)|2 ~ sinc?(P®? - d/2) irrespective of
polarization, anisotropy, and geometric configuration.

Thus, if |P®?| is close to 2, the effect of the above
gratings can be ignored. Fig. 5 and Fig. 6 in the next
section will justify the specific selection of the input
and output pixels as shown in Fig. 2.

II1. B. Second order cross-talk

The desired interconnection is from the pixel i to p.
Second order cross-talk effects result from light waves
that are first diffracted by a grating K; from an input
wave at pixel i, and re-diffracted by a second grating
K- and are directed to the output pixel p as shown in
Fig. 3. The amplitude of the second order cross-talk
follows from Eqs.(6)-(16) after taking the limit for the
case of the exact Bragg condition

@ AKA(K])
(e.o)?2! TgIIS

E?(r) = E¢exp(iks -r). (20)
The second order diffraction yields cross-talk effects
because the diffraction may involve two different grat-
ings simultaneously. The principal source of second or-
der cross-talk effects is diffraction from the interlayer
grating (i.e. interconnection grating K in Fig. 3) fol-
lowed by re-diffraction from the intralayer grating (i.e.
K, generated by interfering two beams k, and k; in
Fig. 3). It is discrable to minimize the strength of the
intralayer grating to eliminate second order cross-talk.
This can be accomplished by selecting a holographic
recording medium in which low spatial frequencies are
recored weakly. This is, for instance, typical of grat-
ings recorded in photorefractive crystals in the absence
of an applied electric field, in which case the recording
is done principally by diffusion of the carriers. In this
case, gratings whose period is considerably longer than
the diffusion length are not recorded effectively. As

FIG. 3. A possible double diffraction which yields second
order cross-talk to the interconnection between the input
pixel i and the output pixel p due to two gratings K2, and
K.
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an example, if KNbOj3 : Fe 300 ppm is utilized[9], the
diffraction efficiency for 0.3[um] fringe spacing is more
than three orders of magnitude larger than 2.6[um)].
Hence, if the specific medium and the arrangement
of input and output pixels are chosen such that the
spatial frequency of interlayer gratings is much higher
than that of the intralayer gratings, then the effects of
intralayer gratings can potentially be made negligible
compared to third order cross-talk effects.

III. C. Third order cross-talk

The third order cross-talk effects stems from the in-
teraction of the light wave with triple gratings selected
from a total of N2 gratings. An example of this triple
diffraction is shown in Fig. 4. In that figure the desired
interconnection is from the pixel i to the output pixel
p . However, the third level diffraction caused by triple
gratings represented by [K3, K2, K, ] generates a light
wave propagating to the same output pixel p . The in-
put light wave at the pixel i first interacts with the
grating K; and the diffracted light propagates to the
pixel j . Then, the diffracted light wave interacts with
the grating K, and the doubly diffracted light propa-
gates to the pixel 1 . Finally, the doubly diffracted wave
interacts with the grating K3 and the triply diffracted
light wave propagates to the pixel p . This third level
diffracted light acts as cross-talk in the interconnec-
tion because the amplitude depends on the gratings
K3, K5, and K,, which represent different interconnec-
tions. There may be a large number of triple gratings
which can be selected from N? gratings. However, the
triple gratings that satisfy the Bragg condition exactly
at the first, second and third intermediate diffraction
step yield the strongest cross-talk effects. The exam-
ple shown in Fig. 3 is one of such triple gratings. The

FIG. 4. A possible triple diffraction which yields third
order cross-talk to the interconnection between the input
pixel i and the output pixel p due to three gratings Ks, Ko,
and K1 .

amplitude of the light wave diffracted from each triple
gratings is given by the general formula

id®  A(k$)A(k3)A(kf)
(£22)%3! Hg H; H'11 .
Total third order cross-talk noise of the volume holo-
graphic interconnection can be obtained by summing
the result of Eq.(19) which are applied to each pos-
sible triple gratings selected from N? gratings. The
total number of possible triple gratings for the specific

arrangement of input and output pixels was obtained
previously[2].

S (r) =

(21)

IV. EXAMPLES OF NUMERICAL
CALCULATION

In the following, we select several examples and
present numerical results obtained by applying the gen-
eral formula. For simplicity, a uniaxial crystal with its
optic axis coincident with the z-direction is considered.
In all calculations, ko = 2m/A, A = 514.5 x 107%,n, =
2.3,n. = 2.21,d = lem and the Bragg angle is chosen
as 30 degrees. All the components of grating strength
are assumed 5 x 1078 . We assume that the input
wave is a unit amplitude plane wave. Fig. 5 and
Fig. 6 show the diffracted output wave intensity ver-
sus horizontal deviation angle and vertical deviation
angle from the Bragg angle for the first level diffrac-
tion when interacting with one grating K laid on the
x-z plane. Fig. 5 and Fig. 6 describe well the specific
selection of the input and out pixels as shown in Fig
2. Fig. 7 shows the diffracted output wave intensity
versus vertical deviation angle from the Bragg angle
for the third level diffraction that having [K - K ,
K] diffraction sequence, and the grating K also laid
on the x-z plane. As shown in Fig. 7, the third level
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FIG. 5. Variation for the first level diffracted output

wave intensity versus horizontal deviation angle
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FIG. 6. Variation for the first level diffracted output
wave intensity versus vertical deviation angle
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FIG. 7. Variation for the third level diffracted output
wave intensity versus vertical deviation angle

diffraction which has 83 = a, 8; = a, 81 = a sequence
and has a; = agy = a3 grating strength, is very small
compared to the first level diffraction. Fig. 8 shows
the third level diffraction due to the back-scattering
effect, which has 83 = a,8: = d,8; = a sequence for
the same situation as in Fig. 7.
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FIG. 8. Variation for the third level diffracted output
wave intensity due to the back-scattering effect versus ver-
tical deviation angle

V. CONCLUSIONS

The integral expansion method of the Maxwell’s
equation was applied to analyze various cross-talk ef-
fects arising from superposed volume gratings for ar-
bitrary light polarization, interaction geometry, and
anisotropy of the host materials. Some numerical re-
sults using general formula are given for first and third
order diffraction.

REFERENCES

[1] D.Psaltis, X.G.Gu,and H.Lee, Tech.Digest, Topical
Meeting Opt.Com., Lake Tahoe, 129 (1987)

(2] H.Lee, X.G.Gu, and D.Psaltis, J.Appl.Phys. 65, 2191
(1989)

[3] P.Van Heerden, Appl. Opt. 2, 387 (1963)

[4] H.Lee, Opt. Lett. 13, 874 (1988)

[5] H.Kogelnik, Bell Syst. Tech. J. 48, 2909 (1968)

[6] E.N.Glytsis and T.K.Gaylord, Appl. Opt. 28, 2401
(1989)

[7] S.K.Jin, Ph.D. Thesis, Seoul National Univ., (1994)

[8] S.K.Jin, J. Opt. Soc. Korea. 1, 67 (1997)

[9] P.Gunter,phys.Rep.93, 199(1982)



