• Title/Summary/Keyword: Different Material

Search Result 9,655, Processing Time 0.036 seconds

Determination of Composite Strength Parameter Using Elasto-Plastic Theory (탄소성이론을 이용한 복합지반의 대표 강도정수 예측)

  • 이주형;김영욱;박용원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.93-100
    • /
    • 2002
  • Vertical reinforcement of soft soils using the deep mixing method has received increasing applications. In this study, the theory of elasticity and plasticity including the upper bound theorem of limit analysis were used to derive the equations for obtaining composite elastic properties and shear strength parameters. The developed equations were validated using the finite element computer program SAGE CRISP. The analysis involved 4 different cases-two different type of soil and replacement ratios. Tile results of the analysis show that the proposed equations could determine the properties of composite material for practical applications.

  • PDF

Characterization of Embedded Inductors using Partial Element Equivalent Circuit Models (부분등가회로모델을 이용한 매립형 인덕터의 특성 연구)

  • 신동욱;오창훈;이규복;김종규;윤일구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.404-408
    • /
    • 2003
  • The characterization for several multi-layer embedded inductors with different structures was investigated. The optimized equivalent circuit models for several test structures were obtained from HSPICE. Building blocks are modeled using Partial element equivalent circuit method. The mean and the standard deviation of model parameters were extracted and predictive modeling was performed on different test structure. From this study, the characteristic of multi-layer inductors can be predicted.

Analysis of Planar Metal Plasmon Waveguides

  • Jung, Jae-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • Propagation modes of symmetric metal-insulator-metal SPP waveguides are analyzed. Main characteristics of these waveguides such as mode effective index, propagation length, and penetration depths are calculated at the telecom wavelength for different layer thickness. We adopt Au, Al as a metal material and air, glass as a dielectric material and obtain different optical characteristics. The surface plasmon characteristics in this paper provide a numerical insight for designing nanostructure metal plasmon waveguide.

Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads

  • Rashad, Mohamed;Yang, T.Y.
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.717-725
    • /
    • 2018
  • One of the most important design criteria in military tunnels and armoured doors is to resist the blast loads with minimum structural weight. This can be achieved by using steel sandwich panels. In this paper, the nonlinear behaviour of steel sandwich panels, with different core materials: (1) Hollow (no core material); (2) Rigid Polyurethane Foam (RPF); and (3) Vulcanized Rubber (VR) under free air blast loads, was investigated using detailed 3D nonlinear finite element models in Ansys Autodyn. The accuracy of the finite element model proposed was verified using available experimental test data of a similar steel sandwich panel tested. The results show the developed finite element model can be reliably used to simulate the nonlinear behaviour of the steel sandwich panels under free air blast loads. The verified finite element model was used to examine the different parameters of the steel sandwich panel with different core materials. The result shows that the sandwich panel with RPF core material is more efficient than the VR sandwich panel followed by the Hollow sandwich panels. The average maximum displacement of RPF sandwich panel under different ranges of TNT charge (1 kg to 10 kg at a standoff distance of 1 m) is 49% and 53% less than the VR and Hollow sandwich panels, respectively. Detailed empirical design equations were provided to quantify the maximum deformation of the steel sandwich panels with different core materials and core thickness under a different range of blast loads. The developed equations can be used as a guide for engineer to design steel sandwich panels with RPF and VR core material under a different range of free air blast loads.

Solid state gas sensors: improvement through material engineering

  • Han, Sang-Do;Korotcenkov, Ghenadii;Gwak, Ji-Hye
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.217-221
    • /
    • 2009
  • Different methods of material engineering, used for improvement of solid state gas sensors parameters are reviewed in this report. The wide possibilities of material engineering in optimization of gas sensing properties were demonstrated on the example of $SnO_2,\;TiO_2\;and\;In_2O_3$-based sensors.

Experimental Study on the Material Properties of Unreinforced Masonry (비보강 조적조의 재료특성 평가에 관한 실험연구)

  • 박진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.178-185
    • /
    • 2000
  • A set of tests were accomplished in order to get better insight of the basic material properties of masonry made of normal concrete brick and different type of mortar compositions. Three different types of test were performed. Masonry unit and prism were tested by compressive strength test, Masonry wallets were tested by compressive strength test. Masonry wallets were tested in diagonally under tension. A significant influence of different mortar compositions on compression strength of masonry prism was observed, The tests have shown that for diagonal compression three different mode of failure were possible : tension crack along the loaded diagonal sliding along a mortar joint and combined sliding and diagonal crack according to the adhesive strength of a mortar.

  • PDF

A Study on Bow of Silicon Solar Cell by Soldering Different Thickness of Ribbon (리본 두께에 따른 태양전지 Bowing현상 연구)

  • Yoon, Na-Ri;Jung, Tae-Hee;Shin, Jun-Oh;Kang, Ki-Hwan;Ahn, Hyeung-Ken;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.68-68
    • /
    • 2010
  • To reduce PV manufacturing costs, the thickness of solar cell is getting thinner. Bow is shown after cooling down the temperature of solder cell. It happens because of different thermal expansion coefficients of different metals. Bowed cell can make micro crack while module processing and it can drop off efficiency of PV module. As thinner solar cell is produced, the thickness of ribbon should be concerned to prevent extra bow. In this paper we investigate the contrast of deflection when we solder different thickness of ribbons on same solar cell. This approach would help to find out the optical thickness of ribbon for particular thickness of solar cell later on.

  • PDF

A Study of Futuristic Materials in Contemporary Fashion

  • Kim, Yoon-Hee;Choi, Yoon-Mi
    • International Journal of Costume and Fashion
    • /
    • v.7 no.1
    • /
    • pp.22-31
    • /
    • 2007
  • The systematic study of the future began with curiosity and imagination about the future; a unique trait of human mental effort-and this seems to be based on the idea that the future can be different depending on current choices or effort. In this sense, it would be seemly to encourage more interest and academic study on the progress of future fashion. In this study, we examine recent changes of fashion material; e.g. that which science and technology have more impact and importance in futuristic fashion since the 1990�s. The period analysed is from the1990's to the present and related data from recent fashion collections and fashion books has also been included The current prediction of the future is largely based on what was formed between the 19th Century and the 20th Century which has persisted until now and has been influenced by the view that science will play a bigger role in the future. This is especially reflected in fashion which chiefly represents material culture. New materials used for fashion are strong and permanently durable, in addition to being very light, thin, flexible, hygienic, ecological and comfortable to wear-almost like a second skin. These fashionable new materials roughly function in two different ways according to external and internal characteristics. First, they cause external change. Second, they exemplify or allow new functions. Examples of external change are the use of silver color, achromatic color, metallic material, smooth-to-the-touch shiny material and the use of luminous material. Examples of the extended function of clothing through the use of new materials are the use of conducting thread, the use of special material for blocking & opening and the use of material which changes colors as the surroundings change. These days, the use of new material which changes its appearance is a novelty unique to the fashion world but we also expect to witness the debut of diverse new materials with extended inner functions.

Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading

  • Mishra, Manish;Ozawa, Shogo;Masuda, Tatsuhiko;Yoshioka, Fumi;Tanaka, Yoshinobu
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.140-144
    • /
    • 2011
  • PURPOSE. Finite element study on the effect of abutment length and material on implant bone interface against dynamic loading. MATERIALS AND METHODS. Two dimensional finite element models of cylinderical implant, abutments and bone made by titanium or polyoxymethylene were simulated with the aid of Marc/Mentat software. Each model represented bone, implant and titanium or polyoxymethylene abutment. Model 1: Implant with 3 mm titanium abutment, Model 2: Implant with 2 mm polyoxymethylene resilient material abutment, Model 3: Implant with 3 mm polyoxymethylene resilient material abutment and Model 4: Implant with 4 mm polyoxymethylene resilient material abutment. A vertical load of 11 N was applied with a frequency of 2 cycles/sec. The stress distribution pattern and displacement at the junction of cortical bone and implant was recorded. RESULTS. When Model 2, 3 and 4 are compared with Model 1, they showed narrowing of stress distribution pattern in the cortical bone as the height of the polyoxymethylene resilient material abutment increases. Model 2, 3 and 4 showed slightly less but similar displacement when compared to Model 1. CONCLUSION. Within the limitation of this study, we conclude that introduction of different height resilient material abutment with different heights i.e. 2 mm, 3 mm and 4 mm polyoxymethylene, does not bring about significant change in stress distribution pattern and displacement as compared to 3 mm Ti abutment. Clinically, with the application of resilient material abutment there is no significant change in stress distribution around implant-bone interface.

MATERIAL MATCHING PROCESS FOR ENERGY PERFORMANCE ANALYSIS

  • Jung-Ho Yu;Ka-Ram Kim;Me-Yeon Jeon
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.213-220
    • /
    • 2011
  • In the current construction industry where various stakeholders take part, BIM Data exchange using standard format can provide a more efficient working environment for related staffs during the life-cycle of the building. Currently, the formats used to exchange the data from 3D-CAD application to structure energy analysis at the design stages are IFC, the international standard format provided by IAI, and gbXML, developed by Autodesk. However, because of insufficient data compatibility, the BIM data produced in the 3D-CAD application cannot be directly used in the energy analysis, thus there needs to be additional data entry. The reasons for this are as follows: First, an IFC file cannot contain all the data required for energy simulation. Second, architects sometimes write material names on the drawings that are not matching to those in the standard material library used in energy analysis tools. DOE-2.2 and Energy Plus are the most popular energy analysis engines. And both engines have their own material libraries. However, our investigation revealed that the two libraries are not compatible. First, the types and unit of properties were different. Second, material names used in the library and the codes of the materials were different. Furthermore, there is no material library in Korean language. Thus, by comparing the basic library of DOE-2, the most commonly used energy analysis engine worldwide, and EnergyPlus regarding construction materials; this study will analyze the material data required for energy analysis and propose a way to effectively enter these using semantic web's ontology. This study is meaningful as it enhances the objective credibility of the analysis result when analyzing the energy, and as a conceptual study on the usage of ontology in the construction industry.

  • PDF