DOI QR코드

DOI QR Code

Solid state gas sensors: improvement through material engineering

  • Published : 2009.05.31

Abstract

Different methods of material engineering, used for improvement of solid state gas sensors parameters are reviewed in this report. The wide possibilities of material engineering in optimization of gas sensing properties were demonstrated on the example of $SnO_2,\;TiO_2\;and\;In_2O_3$-based sensors.

Keywords

References

  1. N. Yamazoe, 'New approaches for improving semiconductor gas sensors', Sens. Actuators B, vol. 5, no. 1-4, pp. 7-19, 1991 https://doi.org/10.1016/0925-4005(91)80213-4
  2. D.E. Williams, 'Semiconducting oxides as gas-sensitive resistors', Sens. Actuators B, vol. 57, no. 1-3, pp. 1-16, 1999 https://doi.org/10.1016/S0925-4005(99)00133-1
  3. K.D. Schierbaum, 'Engineering of oxide surfaces and metal/oxide interfaces for chemical sensors: recent trends', Sens. Actuators B, vol. 24, no. 1-3, pp. 239-247, 1995 https://doi.org/10.1016/0925-4005(95)85051-1
  4. G. Korotcenkov, 'Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches', Sens. Actuators B, vol. 107, no. 1, pp. 209-232, 2005 https://doi.org/10.1016/j.snb.2004.10.006
  5. N. Barsan, M. Schweizer-Berberich and W. Gopel, 'Fundamental and practical aspects in the design of nanoscaled $SnO_2$ gas sensors: a status report', J. Anal. Chem., vol. 365, no. 4, pp. 287-304, 1999 https://doi.org/10.1007/s002160051490
  6. G. Korotcenkov, 'The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors', Mater. Sci. Eng. R, vol. 61 no. 1-6, pp. 1-39, 2008 https://doi.org/10.1016/j.mser.2008.02.001
  7. G. Korotcenkov, 'Metal oxides for solid-state gas sensors: What determines our choice?', Mater. Sci. Eng. B, vol. 139, no.1, pp. 1-23, 2007 https://doi.org/10.1016/j.mseb.2007.01.044
  8. G. Korotcenkov, V. Brinzari, J.R. Stetter, I. Blinov and V. Blaja, 'The nature of processes controlling the kinetics of indium oxide-based thin film gas sensor response', Sens Actuators B, vol. 128, no. 1, pp. 51-63, 2007 https://doi.org/10.1016/j.snb.2007.05.028
  9. M.O. Park, S.D. Choi, B.K. Min and J.W. Lim, 'Long-term stabilized metal oxide-doped $SnO_2$ sensors', J. Kor. Sensors Soc., vol. 17, no. 4, pp. 295-302, 2008 https://doi.org/10.5369/JSST.2008.17.4.295
  10. H.G. Moon, S.J. Yoon, H.H. Park and J.S. Kim, 'Growth mechanism of three dimensionally structured $TiO_2$ thin film for gas sensors', J. Kor. Sensors Soc., vol. 18, no. 2, pp. 110-115, 2009 https://doi.org/10.5369/JSST.2009.18.2.110
  11. D.U. Hong, C.H. Han, S.D. Han, J. Gwak and S.Y. Lee, 'Catalytic combustion type hydrogen gas sensor using $TiO_2$ and UV LED', J. Kor. Sensors Soc., vol. 16, no. 1, pp. 7-10, 2007 https://doi.org/10.5369/JSST.2007.16.1.007
  12. V. Brinzari, G. Korotcenkov and V. Golovanov, 'Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control', Thin Solid Films, vol. 391, no. 2, pp. 167-175, 2001 https://doi.org/10.1016/S0040-6090(01)00978-6
  13. G. Korotcenkov, V. Macsanov, V. Tolstoy, V. Brinzari, J. Schwank and G. Faglia, 'Structural and gas response characterization of nano-size $SnO_2$ films deposited by SILD method', Sens. Actuators B, vol. 96, no. 3, pp. 602-609, 2003 https://doi.org/10.1016/j.snb.2003.07.002
  14. D. Kohl, 'The role of noble metals in the chemistry of solid-state gas sensors', Sens. Actuators B, vol. 1, no. 1-6, pp. 158-165, 1990 https://doi.org/10.1016/0925-4005(90)80193-4
  15. C. Pijolat, J.P. Viricelle, G. Tournier and P. Montmeat, 'Application of membranes and filtering films for gas sensors improvements', Thin Solid Films, vol. 490, no. 1, pp. 7-16, 2005 https://doi.org/10.1016/j.tsf.2005.04.017
  16. H. Yamaura, K. Moriya, N. Miura and N. Yamazoe, 'Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide', Sens. Actuators B, vol. 65, no. 1-3, pp. 39-41, 2000 https://doi.org/10.1016/S0925-4005(99)00456-6
  17. G. Sberveglieri, 'Recent developments in semiconducting thin-film gas sensors', Sens. Actuators B, vol. 23, no. 2-3, pp. 103-109, 1995 https://doi.org/10.1016/0925-4005(94)01278-P
  18. G. Korotcenkov, I. Blinov, V. Brinzari and J.R. Stetter, 'Effect of air humidity on gas response of $SnO_2$ thin film ozone sensors', Sens. Actuators B, vol. 122, no. 2, pp. 519.-526, 2007 https://doi.org/10.1016/j.snb.2006.06.025
  19. C.-H. Han S.-D. Han and S.P. Khatkar, 'Enhancement of $H_2$-sensing properties of F-doped $SnO_2$ sensor by surface modification with $SiO_2$', Sensors, vol. 6, no. 5, pp. 492-502, 2006 https://doi.org/10.3390/s6050492
  20. C.H. Han, D.W. Hong, I.J. Kim, J. Gwak, S.D. Han and K.C. Singh, 'Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor', Sens. Actuators B, vol. 128, no. 1, pp. 320-325, 2007 https://doi.org/10.1016/j.snb.2007.06.025
  21. G. Korotcenkov, V. Brinzari, Y. Boris, M. Ivanov, J. Schwank and J. Morante, 'Influence of surface Pd doping on gas sensing characteristics of $SnO_2$ thin films deposited by spray pirolysis', Thin Solid Films, vol. 436, no. 1, pp. 119-126, 2003 https://doi.org/10.1016/S0040-6090(03)00506-6
  22. I.J. Kim, S.D. Han, C.H. Han, J. Gwak, D.U. Hong, D. Jakhar, K.C. Singh and J.S. Wang, 'Development of micro hydrogen gas sensor with $SnO_2$-36 $Ag_2O-PtO_x$ composite using MEMS process', Sens. Actuatores B, vol. 127, no. 2, pp. 441-446, 2007 https://doi.org/10.1016/j.snb.2007.04.047
  23. I.J. Kim, S.D. Han, C.H. Han, J. Gwak, H.D. Lee and J.S. Wang, 'Micro semiconductor CO sensors based on indium-doped tin dioxide nanocrystalline powders', Sensors, vol. 6, no. 5, pp. 526-535, 2006 https://doi.org/10.3390/s6050526
  24. G. Korotcenkov, V. Brinzari and I. Boris, '(Cu, Fe, Co or Ni)-doped $SnO_2$ films deposited by spray pyrolysis: Doping influence on film morphology', J. Mater. Sci., vol. 43, no. 8, pp. 2761-2770, 2008 https://doi.org/10.1007/s10853-008-2486-4
  25. V. Brinzari, G. Korotcenkov, V. Golovanov, J. Schwank, V. Lantto and S. Saukko, 'Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from $SnCl_4{\cdot}5H_2O$ water solution', Thin Solid Films, vol. 408, no. 1-2, pp. 51-58, 2002 https://doi.org/10.1016/S0040-6090(02)00086-X
  26. G. Korotcenkov, A. Cornet, E. Rossinyol, J. Arbiol, V. Brinzari and Y. Blinov, 'Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic chloride water solution', Thin Solid Films, vol. 471, no. 1-2, pp. 310-319, 2005 https://doi.org/10.1016/j.tsf.2004.06.127
  27. G. Korotcenkov, 'Practical aspects in design of oneelectrode semiconductor gas sensors: Status report', Sens. Actuators B, vol. 121, no. 2, pp. 664-678, 2007 https://doi.org/10.1016/j.snb.2006.04.092
  28. G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golovanov, A. Cornet, J. Morante, A. Cabot and J. Arbiol, 'The influence of film structure on $In_2O_3$ gas response', Thin Solid Films, vol. 460, no. 1-2, pp. 315-323, 2004 https://doi.org/10.1016/j.tsf.2004.02.018
  29. G. Korotcenkov, V. Brinzari, M. Ivanov, A. Cerneavschi, J. Rodriguez, A. Cirera, A. Cornet and J. Morante, 'Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing', Thin Solid Films, vol. 479, no. 1-2, pp. 38-51, 2005 https://doi.org/10.1016/j.tsf.2004.11.107
  30. G. Korotcenkov and J.R. Stetter, 'Comparative study of $SnO_2$- and $In_2O_3$- based ozone sensors', ECS Transactions, vol. 6, no. 20, pp. 29-41, 2008