• Title/Summary/Keyword: Dielectric Materials

Search Result 2,119, Processing Time 0.025 seconds

Polymorphic Phase Transition and Temperature Coefficient of Capacitance of Alkaline Niobate Based Ceramics

  • Bae, Seon-Gi;Shin, Hyea-Gyiung;Sohn, Eun-Young;Im, In-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.2
    • /
    • pp.78-81
    • /
    • 2013
  • $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ (hereafter, No excess NKN) ceramics and $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ with excess $(Na_{0.5}K_{0.5})NbO_3$ (hereafter, Excess NKN) were fabricated by the conventional solid state sintering method, and their phase transition properties and dielectric properties were investigated. The crystalline structure of No excess NKN ceramics and Excess NKN ceramics were shown characteristics of polymorphic phase transition (hereafter, PPT), especially shift from the orthorhombic to tetragonal phase by increasing sintering temperature range from $1,100^{\circ}C$ to $1,200^{\circ}C$. Also, the temperature coefficient of capacitance (hereafter, TCC) of No excess NKN ceramics and Excess NKN ceramics from $-40^{\circ}C$ to $100^{\circ}C$ was measured to evaluate temperature stability for applications in cold regions. The TCC of No excess NKN and Excess NKN ceramics showed positive TCC characteristics at a temperature range from $-40^{\circ}C$ to $100^{\circ}C$. Especially, Excess NKN showed a smaller TCC gradient than those of Excess NKN ceramics in range from $-40^{\circ}C$ to $100^{\circ}C$. Therefore, NKN piezoelectric ceramics combined with temperature compensated capacitor having negative temperature characteristics is desired for usage in cold regions.

Comparative Analysis of PD Characteristics Under SF6, g3 and Dry Air Insulation (SF6, g3 및 Dry Air 절연에서 PD 특성 비교 분석)

  • Shin, Han-sin;Kim, Nam-Hoon;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.490-494
    • /
    • 2020
  • Sulphur hexafluoride (SF6) is mostly used as a current-insulating medium in gas-insulated switchgears (GIS), owing to its excellent dielectric strength and arc-extinguishing performance. The global warming potential (GWP) of SF6, however, is 23,900 times that of CO2, and its life time in the atmosphere is 3,200 years. For these reasons, new eco-friendly gases to replace SF6 are required. In this study, the partial discharge (PD) characteristics of green gas for grid (g3) and dry air (N2/O2) were analyzed to compare with those of SF6. A PD electrode system was designed to simulate the protrusion defect in GISs and fabricated for experimentation. To compare the PD characteristics of each gas, the discharge inception voltage (DIV), discharge extinction voltage (DEV), discharge magnitude, discharge pulse number, and phase pattern were analyzed. Results from this study are expected to provide fundamental materials for the design of eco-friendly GISs.

Characteristics of Organic Thin-Film Transistors with Polymeric Insulator and P3HT by Using Spin-Coating (스핀 코팅으로 제작된 유기 절연체와 P3HT 유기 박막 트랜지스터 특성)

  • Kim, Jung-Seok;Chang, Jong-Hyeon;Kim, Byoung-Min;Ju, Byeong-Kwon;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1313-1314
    • /
    • 2007
  • This paper presents organic thin-film transistors (OTFTs) with poly(3-hexylthiophene)(P3HT) semiconductor and several polymeric dielectric materials of poly(vinyl phenol)(PVP), poly(vinyl alcohol)(PVA), and polyimide(PI) by using soluble process. The fabricated OTFT's have inverted staggered structure using transmission line method(TLM) pattern. In order to evaluate the electrical characteristics of the OTFT, capacitance-voltage(C-V) and current-voltage(I-V) were measured. C-V graphs were measured at several frequencies of 100 Hz, 1 kHz, and 1 MHz and ID-VDS graphs according to $V_{GS}$. The current on/off ratio and threshold voltage with each of PVP, PVA, and PI based OTFTs were measured to $10^3$, and -0.36, -0.41, and -0.62 V. Also, the calculated mobility with each of PVP, PVA, and PI was 0.097, 0.095, and 0.028 $cm^{2}V^{-1}s^{-1}$, respectively. In the cases of PVP and PVA, the hole mobility of P3HT was in excellent agreement with the published value of 0.1 $cm^{2}V^{-1}s^{-1}$.

  • PDF

Electrical properties of sol-gel derived $ PbZrO_3$-$PbTiO_3$-$Pb(Ni_{1/3}Nb_{2/3})O_3$ thin film (Sol-Gel 법에 의한$ PbZrO_3$-$PbTiO_3$-$Pb(Ni_{1/3}Nb_{2/3})O_3$)

  • 임무열;구경완;한상옥
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.134-140
    • /
    • 1997
  • PbTiO$_{3}$-PbZrO$_{3}$-Pb(Ni$_{1}$3/Nb $_{2}$3/O$_{3}$)(PZT-PNN) thin films were prepared from corresponding metal organics partially stabilized with diethanolamine by the sol-gel spin coating method. Each mol rates of PT:PZ:PNN solutions were #1(50:40:10), #2(50:30:20), #3(45:35:20) and #4(40:40:20), respectively. The spin-coated PZT-PNN films were sintered at the temperature from 500.deg. C to 600.deg. C for crystallization. The P-E hysteresis curve was drawn by Sawyer-Tower circuit with PZT-PNN film. The coercive field and the remanent polarization of #4(40:40:20 mol%) PZT-PNN film were 28.8 kV/cm and 18.3 .mu.C/cm$^{2}$, respectively. Their dielectric constants were shown between 128 and 1120, and became maximum value in MPB(40:40:20 mol%). The leakage currents of PZT-PNN films were about 9.4x 10$^{-8}$ A/cm$^{2}$, and the breakdown voltages were about 0.14 and 1.1 MV/cm. The Curie point of #3(45:35:20 mol%, sintered at 600.deg. C) film was 330.deg. C.

  • PDF

Effect of Seed-layer thickness on the Crystallization and Electric Properties of SBN Thin Films. (SBN 박막의 결정화 및 전기적 특성에 관한 씨앗층 두께의 영향)

  • Jang, Jae-Hoon;Lee, Dong-Gun;Lee, Hee-Young;Cho, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.271-274
    • /
    • 2003
  • [ $Sr_xBa_{1-x}Nb_2O_6$ ] (SBN, $0.25{\leq}x{\leq}0.75$) ceramic is a ferroelectric material with tetragonal tungsten bronze (TTB) type structure, which has a high pyroelectric coefficient and a nonlinear electro-optic coefficient value. In spite of its advantages, SBN has not been investigated well compared to other ferroelectric materials with perovskite structure. In this study, SBN thin film was manufactured by ion beam sputtering technique using the prepared SBN target in $Ar/O_2$ atmosphere. SBN30 thin films of different thickness were pre-deposited as a seed layer on $Pt(100)/TiO_2/SiO_2/Si$ substrate followed by SBN60 deposition up to $4500\;{\AA}$ in thickness. As-deposited SBN60/SBN30 layer was heat-treated at different temperatures of 650, 700, 750, and $800\;^{\circ}C$ in air, respectively, The crystallinity and orientation behavior as well as electric properties of SBN60/SBN30 multi-layer were examined. The deposited layer was uniform and the orientation was shown primarily along (001) plane from XRD pattern. There was difference in the crystal structure with heat-treatment temperature, and the electric properties depended on the heating temperature and the seed-layer thickness. In electric properties of Pt/SBN60/SBN30/Pt thin film capacitor prepared, the remnant polarization (2Pr) value was $15\;{\mu}C/cm^2$, the coercive field (Ec) 65 kV/cm, and the dielectric constant 1492, respectively.

  • PDF

A Study on Characteristics of Triple-band Plastic Chip Antenna for Mobile Terminal using Foamex Materials (Formax 매질을 이용한 이동통신 단말기용 삼중대역 플라스틱 칩 안테나에 관한 연구)

  • Lee, Young-Hun;Song, Sung-Hae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2210-2216
    • /
    • 2007
  • In this paper, triple-band plastic chip antennas for mobile terminal are investigated. Plastic chip antenna is composed of Foamex material with circle of PVC(Polyvilyl chloride). For its electric characteristics, the dielectric constant is 1.9, the insulation intensity is 112KV/cm. Plastic chip antennas are don't tend to break easily against to external shock, have more gain and efficiency than ceramic chip antennas. Triple-band plastic chip antennas of four type are implemented and experimented. From the experiments results, the antenna resonate at the triple-band, the gain of the antennas has about above -2dB, the pattern is ommidirectional the same as the conventional antennas. So, the antennas realized with Foamex material will be application for mobile phone antenna operated at the triple band which is cellular band and Korea-PCS band and ISM band or the antenna for other wireless communication system.

Effects of process variables on aqueous-based AlOx insulators for high-performance solution-processed oxide thin-film transistors

  • Huh, Jae-Eun;Park, Jintaek;Lee, Junhee;Lee, Sung-Eun;Lee, Jinwon;Lim, Keon-Hee;Kim, Youn Sang
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.117-123
    • /
    • 2018
  • Recently, aqueous method has attracted lots of attention because it enables the solution-processed metal oxide thin film with high electrical properties in low temperature fabrication condition to various flexible devices. Focusing the development of aqueous route, many researchers are only focused on metal oxide materials. However, for expansive application of the aqueous-based metal oxide films, the systematic study of performance change with process variables for the development of aqueous-based metal oxide insulator film is urgently required. Here, we propose importance of process variables to achieve high electrical-performance metal oxide insulator based on the aqueous method. We found that the significant process variables including precursor solution temperature and humidity during the spincoating process strongly affect chemical, physical, and electrical properties of $AlO_x$ insulators. Through the optimization of significant variables in process, an $AlO_x$ insulator with a leakage current value approximately $10^5$ times smaller and a breakdown voltage value approximately 2-3 times greater than un-optimized $AlO_x$ was realized. Finally, by introducing the optimized $AlO_x$ insulators to solutionprocessed $InO_x$ TFTs, we successfully achieved $InO_x/AlO_x$ TFTs with remarkably high average field-effect mobility of ${\sim}52cm^2V^{-1}\;s^{-1}$ and on/off current ratio of 106 at fabrication temperature of $250^{\circ}C$.

Passive Device Library Implementation of LTCC Multilayer Board for Wireless Communications (무선통신용 LTCC 다층기판의 수동소자 라이브러리 구현)

  • Cho, Hak-Rae;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • This paper has designed, fabricated, and analyzed the passive devices realized using low temperature co-fired ceramic (LTCC) multi layer substrates by dividing into the shrinkage process and the non-shrinkage process. Using two types of ceramic materials with dielectric constant 7 or 40, we have fabricated the same shape of various elements in 2 different processes and compared the characteristics. For the substrate of dielctric constant 40, compared with the shrinkage process which has 17% shrink in the X and Y directions with 36% shrink in the Z direction, the non-shrinkage process has 43% shrink in the Z direction without shrink in the X and Y directions, so high dimensional accuracy and surface flatness can be obtained. The inductances and capacitances of the fabricated elements are estimated from measurement using empirical analysis equations of parameters and implemented as a design library. Depending on the substrate and the process, the inductance and capacitance depending on the turn number of winding and unit area have been measured, and empirical polynomials are proposed to predict element values.

A Study on the Analysis of Electromagnetic Characteristics and Design of a Cylindrical Photonic Crystal Waveguide with a Low-Index Core (중심-동공을 갖는 원통형태 광결정 도파로의 전자장 특성 분석 및 설계 연구)

  • Kim, Jeong I.
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, a cylindrical photonic crystal waveguide with a low-index core is first proposed. The core can be filled with air, liquid, or arbitrary dielectric materials. Exact analyses for the electromagnetic field characteristics of guided modes, by using appropriate Bessel functions and applying the boundary conditions, are performed to find out the guiding characteristics of the proposed waveguide. For verification and usage in design and manufacturing process, the computer-calculation of the waveguide transmission characteristics is also performed by applying the rigorous full-vectorial finite difference method. Providing variations of the effective area for the fundamental mode of the designed waveguide with different numbers of cladding layers, ranging from 2.6056 ㎛2 to 5.9673 ㎛2 over the operation wavelength, generally as the core refractive index n1 is higher, the mode area becomes smaller and the result leads to more optimistic effect for nonlinear device applications.

Properties of double-layered anodizing films on Al alloys formed by two consecutive anodizings (알루미늄 합금의 연속식 양극산화법으로 형성시킨 이중 산화막층의 특성)

  • Jeong, Nagyeom;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.1
    • /
    • pp.30-36
    • /
    • 2021
  • In this study, double-layered anodizing films were formed on Al 5052 and Al 6061 alloys consecutively first in sulfuric acid and then in oxalic acid, and hardness, withstand voltage, surface roughness and acid resistance of the anodizing films were compared with single-layered anodizing films in sulfuric acid and oxalic acid electrolytes. Hardness of the double-layered anodizing film decreased with increasing ratio of inner layer to outer layer for both Al 5052 and Al 6061 alloys, suggesting that outer anodizing film formed in sulfuric acid electrolyte is damaged during the second anodizing in oxalic acid electrolyte. Withstand voltage of the double-layered anodizing films increased with increasing the thickness ratio of inner layer to outer layer. Surface roughness of the double-layered anodizing films were comparable with that of single-layered anodizing film formed in sulfuric acid but higher than that of single layer anodizing film formed in oxalic acid electrolyte. In acid resistance test, all of the double-layered and single-layered anodizing films showed good acid resistance more than 3 h without any visible gas evolution, which is attributable to sealing of pores. Based on the experimental results obtained in this work, it is possible to design a double-layered anodizing film with cost-effectiveness and improved physical and electrical properties by combining two consecutive anodizing processes of sulfuric acid anodizing and oxalic acid anodizing methods.