DOI QR코드

DOI QR Code

Polymorphic Phase Transition and Temperature Coefficient of Capacitance of Alkaline Niobate Based Ceramics

  • Bae, Seon-Gi (Department of Electrical Engineering, University of Incheon) ;
  • Shin, Hyea-Gyiung (Department of Electrical Engineering, University of Incheon) ;
  • Sohn, Eun-Young (Department of Automation Systems, Korea Polytechnics VI) ;
  • Im, In-Ho (Department of Electrical Engineering, Shinansan University)
  • Received : 2013.01.29
  • Accepted : 2013.02.25
  • Published : 2013.04.25

Abstract

$0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ (hereafter, No excess NKN) ceramics and $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ with excess $(Na_{0.5}K_{0.5})NbO_3$ (hereafter, Excess NKN) were fabricated by the conventional solid state sintering method, and their phase transition properties and dielectric properties were investigated. The crystalline structure of No excess NKN ceramics and Excess NKN ceramics were shown characteristics of polymorphic phase transition (hereafter, PPT), especially shift from the orthorhombic to tetragonal phase by increasing sintering temperature range from $1,100^{\circ}C$ to $1,200^{\circ}C$. Also, the temperature coefficient of capacitance (hereafter, TCC) of No excess NKN ceramics and Excess NKN ceramics from $-40^{\circ}C$ to $100^{\circ}C$ was measured to evaluate temperature stability for applications in cold regions. The TCC of No excess NKN and Excess NKN ceramics showed positive TCC characteristics at a temperature range from $-40^{\circ}C$ to $100^{\circ}C$. Especially, Excess NKN showed a smaller TCC gradient than those of Excess NKN ceramics in range from $-40^{\circ}C$ to $100^{\circ}C$. Therefore, NKN piezoelectric ceramics combined with temperature compensated capacitor having negative temperature characteristics is desired for usage in cold regions.

Keywords

References

  1. G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999) [DOI: http:// dx.doi.org/10.1111/j.1151-2916.1999.tb01840.x].
  2. J. Zeng, Y. Zhang, L. Zheng, G. Li, and Q. Yin, J. Am. Ceram. Soc. 92, 752 (2009) [DOI: http://dx.doi.org/10.1111/j.1551- 2916.2008.02921.x].
  3. Y. Saito, H. Takao, T. Tari, T. Nonoyama, K. Takatori, T. Homma, and T. Nagaya, Nature 432, 84 (2004) [DOI: http://dx.doi.org/10.1038/nature03028].
  4. F. Rubio-Marcos, J.J. Romero, M.G. Navarro-Rojero, and J.F. Fernandez, J. Eur. Ceram. Soc. 29 3045 (2009) [DOI: http://dx.doi. org/10.1016/j.jeurceramsoc.2009.04.026].
  5. J. R. Yoon, C.B. Lee, K.M. Lee. H.Y. Lee, and S.W. Lee, KIEEME 11(3) 126 (2010) [DOI: http://dx.doi.org/10.4313/ TEEM.2010.11.3.126].
  6. S. H. Lee, and Y. H. Lee, J. Ceramic Processing Research, Vol 12(4) 416 (2011) [DOI: http://jcpr.kbs-lab.co.kr/file/JCPR_ vol.12_2011/JCPR12-4/12.416-419].
  7. Y. Li, W. Chen, Q. Xu, J. Zhou, and X. Gu, Materials Letters 59 1361 (2005) [DOI: http://dx.doi.org/10.1016/ j.matlet.2004.12.041].
  8. C. W. Ahn, C.H. Choi, H.Y. Park, S. Nahm, and S. Priya, J. Mater. Sci. 43 6784 (2008) [DOI: http://dx.doi.org/10.1007/s10853- 008-2934-1].
  9. H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, S. Nahm, K. Uchino, H. G. Lee, and H. J. Lee, Appl. Phys. Lett. 89 062906 (2006) [DOI: http://dx.doi.org/10.1063/1.2335816].

Cited by

  1. Dielectric Relaxation Properties of KNN-BT Ceramics with (Ba,Ca)SiO3Glass Frit vol.27, pp.6, 2014, https://doi.org/10.4313/JKEM.2014.27.6.367
  2. Effect of Particle Size on the Dielectric and Piezoelectric Properties of 0.95(K0.5Na0.5)NbO3-0.05BaTiO3Lead-free Piezoelectric Ceramics vol.16, pp.4, 2015, https://doi.org/10.4313/TEEM.2015.16.4.179