Browse > Article
http://dx.doi.org/10.4313/TEEM.2013.14.2.78

Polymorphic Phase Transition and Temperature Coefficient of Capacitance of Alkaline Niobate Based Ceramics  

Bae, Seon-Gi (Department of Electrical Engineering, University of Incheon)
Shin, Hyea-Gyiung (Department of Electrical Engineering, University of Incheon)
Sohn, Eun-Young (Department of Automation Systems, Korea Polytechnics VI)
Im, In-Ho (Department of Electrical Engineering, Shinansan University)
Publication Information
Transactions on Electrical and Electronic Materials / v.14, no.2, 2013 , pp. 78-81 More about this Journal
Abstract
$0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ (hereafter, No excess NKN) ceramics and $0.95(Na_{0.5}K_{0.5})NbO_3-0.05BaTiO_3+0.2wt%\;Ag_2O$ with excess $(Na_{0.5}K_{0.5})NbO_3$ (hereafter, Excess NKN) were fabricated by the conventional solid state sintering method, and their phase transition properties and dielectric properties were investigated. The crystalline structure of No excess NKN ceramics and Excess NKN ceramics were shown characteristics of polymorphic phase transition (hereafter, PPT), especially shift from the orthorhombic to tetragonal phase by increasing sintering temperature range from $1,100^{\circ}C$ to $1,200^{\circ}C$. Also, the temperature coefficient of capacitance (hereafter, TCC) of No excess NKN ceramics and Excess NKN ceramics from $-40^{\circ}C$ to $100^{\circ}C$ was measured to evaluate temperature stability for applications in cold regions. The TCC of No excess NKN and Excess NKN ceramics showed positive TCC characteristics at a temperature range from $-40^{\circ}C$ to $100^{\circ}C$. Especially, Excess NKN showed a smaller TCC gradient than those of Excess NKN ceramics in range from $-40^{\circ}C$ to $100^{\circ}C$. Therefore, NKN piezoelectric ceramics combined with temperature compensated capacitor having negative temperature characteristics is desired for usage in cold regions.
Keywords
NKN-BT; Polymorphic phase transition(PPT); Temperature coefficient of capacitance(TCC); Excess NKN; Temperature stability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999) [DOI: http:// dx.doi.org/10.1111/j.1151-2916.1999.tb01840.x].   DOI   ScienceOn
2 J. Zeng, Y. Zhang, L. Zheng, G. Li, and Q. Yin, J. Am. Ceram. Soc. 92, 752 (2009) [DOI: http://dx.doi.org/10.1111/j.1551- 2916.2008.02921.x].   DOI   ScienceOn
3 Y. Saito, H. Takao, T. Tari, T. Nonoyama, K. Takatori, T. Homma, and T. Nagaya, Nature 432, 84 (2004) [DOI: http://dx.doi.org/10.1038/nature03028].   DOI   ScienceOn
4 F. Rubio-Marcos, J.J. Romero, M.G. Navarro-Rojero, and J.F. Fernandez, J. Eur. Ceram. Soc. 29 3045 (2009) [DOI: http://dx.doi. org/10.1016/j.jeurceramsoc.2009.04.026].   DOI   ScienceOn
5 J. R. Yoon, C.B. Lee, K.M. Lee. H.Y. Lee, and S.W. Lee, KIEEME 11(3) 126 (2010) [DOI: http://dx.doi.org/10.4313/ TEEM.2010.11.3.126].   DOI   ScienceOn
6 S. H. Lee, and Y. H. Lee, J. Ceramic Processing Research, Vol 12(4) 416 (2011) [DOI: http://jcpr.kbs-lab.co.kr/file/JCPR_ vol.12_2011/JCPR12-4/12.416-419].
7 Y. Li, W. Chen, Q. Xu, J. Zhou, and X. Gu, Materials Letters 59 1361 (2005) [DOI: http://dx.doi.org/10.1016/ j.matlet.2004.12.041].   DOI   ScienceOn
8 C. W. Ahn, C.H. Choi, H.Y. Park, S. Nahm, and S. Priya, J. Mater. Sci. 43 6784 (2008) [DOI: http://dx.doi.org/10.1007/s10853- 008-2934-1].   DOI
9 H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, S. Nahm, K. Uchino, H. G. Lee, and H. J. Lee, Appl. Phys. Lett. 89 062906 (2006) [DOI: http://dx.doi.org/10.1063/1.2335816].   DOI   ScienceOn