• Title/Summary/Keyword: Diamond-like carbon Film

Search Result 199, Processing Time 0.031 seconds

The noble method for superhydrophobic thin film coating

  • Seo, Hyeon-Uk;Kim, Gwang-Dae;Jeong, Myeong-Geun;Kim, Dong-Un;Kim, Myeong-Ju;;Kim, Yeong-Dok;Im, Dong-Chan;Lee, Gyu-Hwan;Eom, Seong-Hyeon;Lee, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.496-496
    • /
    • 2011
  • A very simple and cost-effective method for fabrication of SiOx-incorporated diamond-like carbon (DLC) thin films at a preparation temperature of less than $200^{\circ}C$ was developed. Since DLC coating can be prepared not under vacuum but atmospheric conditions without any carrier gas flow, not only wafers but also powderic substrates can be used for DLC coating. Formation of DLC coating could result in appearance of superhydrophobic behaviors, which was sustained in a wide range of pH (1~14). DLC-coated surfaces selectively interacted with toluene in a toluene/water mixture. These results imply that our preparation method of the DLC coating can be useful in many application fields such as creating self-cleaning surfaces, and water and air purification filters.

  • PDF

Fabrication of Mo-tip Field Emitter Array and Diamond-like Carbon Coating Effects (몰리브덴 팁 전계 방출 소자의 제조 및 다이아몬드 상 카본의 코팅효과)

  • Ju, Byeong-Kwon;Jung, Jae-Hoon;Kim, Hoon;Lee, San-Jo;Lee, Yun-Hi;Tchah, Kyun-Hyon;Oh, Myung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.508-516
    • /
    • 1998
  • Mo-tip field emitter arrays(FEAs) were fabricated by conventional Spindt process and their life time characteristics and failure mode were evaluated. The fabricated Mo-tip FEA could generate at least $0.35\{mu} A/tip$ emission current for about 320 persistently under a constant gate bias of 140 V and was finally destroyed through self-healing mode. Thin diamond-like carbon films were coated on the M-tip by plasma-enhanced CVD and the dependence of emission properties upon the DLC thickness was investigated. By DLC coating, the turn-on voltage and emission current were appeared to be improved whereas the current fluctuation was increased in the DLC thickness range of $0~1,000\{AA}$.

  • PDF

THE EFFECT OF THE HIGH DENSITY PLASMA ON THE DIAMOND-LIKE CARBON FILMS

  • Kim, H.;D.H. Jung;Park, B.;K. C. Yoo;Lee, J. J.;J. H. Joo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.54-54
    • /
    • 2003
  • DLC films were deposited on Si(100) substrates by inductively coupled plasma (ICP) assisted chemical vapor deposition (CVD). A mixture of acetylene (C$_2$H$_2$) and argon (Ar) gases was used as the precursor and plasma source, respectively. The structure of the films was characterized by the Raman spectroscopy. Results from the Raman spectroscopy analysis indicated that the property change of the DLC films is due to the sp$^3$ and sp$^2$ ratio in the films under various conditions such as ICP power, working pressure and RF substrate bias. The hydrogen content in the DLC films was determined by an electron recoil detector (ERB). The roughness of the films was measured by atomic force microscope (Am). A microhardness tester was used for the hardness and elastic modulus measurement. The DLC film showed a maximum hardness of 37㎬. In this work, the relationship between deposition parameters and mechanical properties were discussed.

  • PDF

Parametric Studies of Pulsed Laser Deposition of Indium Tin Oxide and Ultra-thin Diamond-like Carbon for Organic Light-emitting Devices

  • Tou, Teck-Yong;Yong, Thian-Khok;Yap, Seong-Shan;Yang, Ren-Bin;Siew, Wee-Ong;Yow, Ho-Kwang
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.65-74
    • /
    • 2009
  • Device quality indium tin oxide (ITO) films are deposited on glass substrates and ultra-thin diamond-like carbon films are deposited as a buffer layer on ITO by a pulsed Nd:YAG laser at 355 nm and 532 nm wavelength. ITO films deposited at room temperature are largely amorphous although their optical transmittances in the visible range are > 90%. The resistivity of their amorphous ITO films is too high to enable an efficient organic light-emitting device (OLED), in contrast to that deposited by a KrF laser. Substrate heating at $200^{\circ}C$ with laser wavelength of 355 nm, the ITO film resistivity decreases by almost an order of magnitude to $2{\times}10^{-4}\;{\Omega}\;cm$ while its optical transmittance is maintained at > 90%. The thermally induced crystallization of ITO has a preferred <111> directional orientation texture which largely accounts for the lowering of film resistivity. The background gas and deposition distance, that between the ITO target and the glass substrate, influence the thin-film microstructures. The optical and electrical properties are compared to published results using other nanosecond lasers and other fluence, as well as the use of ultra fast lasers. Molecularly doped, single-layer OLEDs of ITO/(PVK+TPD+$Alq_3$)/Al which are fabricated using pulsed-laser deposited ITO samples are compared to those fabricated using the commercial ITO. Effects such as surface texture and roughness of ITO and the insertion of DLC as a buffer layer into ITO/DLC/(PVK+TPD+$Alq_3$)/Al devices are investigated. The effects of DLC-on-ITO on OLED improvement such as better turn-on voltage and brightness are explained by a possible reduction of energy barrier to the hole injection from ITO into the light-emitting layer.

Improvement of Adhesion Strength of DLC Films on Nitrided Layer Prepared by Linear Ion Source

  • Shin, Chang-Seouk;Kim, Wang-Ryeol;Park, Min-Seok;Jung, Uoo-Chang;Chung, Won-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.177-179
    • /
    • 2011
  • The purpose of this study is to enhance an adhesion between substrate and Diamond-like Carbon (DLC) film. DLC has many outstanding properties such as low friction, high wear resistance and corrosion resistance. However, it is difficult to achieve enough adhesion because of weak bonding between DLC film and the substrate. For improvement adhesion, a layer between DLC film and the substrate was prepared by dual post plasma. DLC film was deposited on nitrided layer by linear ion source. The composed compound layer between substrate and DLC film was investigated by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The synthesized bonding structure of DLC film was analyzed using a micro raman spectrometer. Mechanical properties were measured by nano-indentation. In order to clarify the mechanism for improvement in adhesive strength, it was observed by scratch test.

  • PDF

Improved Adhesion of DLC Films by using a Nitriding Layer on AISI H13 Substrate

  • Park, Min-Seok;Kim, Dae-Young;Shin, Chang-Seouk;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.307-314
    • /
    • 2021
  • Diamond-like carbon (DLC) is difficult to achieve sufficient adhesion because of weak bonding between DLC film and the substrate. The purpose of this study is to improve the adhesion between substrate and DLC film. DLC film was deposited on AISI H13 using linear ion source. To improve adhesion, the substrate was treated by dual post plasma nitriding. In order to define the mechanism of the improvement in adhesive strength, the gradient layer between substrate and DLC film was analyzed by Glow Discharge Spectrometer (GDS) and Scanning Electron Microscope (SEM). The microstructure of the DLC film was analyzed using a micro Raman spectrometer. Mechanical properties were measured by nano-indentation, micro vickers hardness tester and tribology tester. The characteristic of adhesion was observed by scratch test. The adhesion of the DLC film was enhanced by active screen plasma nitriding layer.

Evaluation of Thin Film Residual Stress through the Theoretical Analysis of Nanoindentation Curve (나노 압입곡선의 이론적 분석을 통한 박막의 잔류응력 평가)

  • Lee, Yun-Hee;Jang, Jae-Il;Kwon, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1270-1279
    • /
    • 2002
  • Residual stress is a dominant obstacle to efficient production and safe usage of device by deteriorating the mechanical strength and failure properties. Therefore, we proposed a new thin film stress-analyzing technique using a nanoindentation method. For this aim, the shape change in the indentation load-depth curve during the stress-relief in film was theoretically modeled. The change in indentation depth by load-controlled stress relaxation process was related to the increase or decrease in the applied load using the elastic flat punch theory. Finally, the residual stress in thin film was calculated from the changed applied load based on the equivalent stress interaction model. The evaluated stresses for diamond-like carbon films from this nanoindentation analysis were consistent with the results from the conventional curvature method.

Large-area Uniform Deposition of Amorphous Hydrogenated Carbon Films using a Plasma CVD Method (플라즈마 CVD 법을 이용한 대면적 균일한 비정질 탄소 막 증착)

  • Yun, Sang-Min;Yang, Sung-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.411-414
    • /
    • 2009
  • It has been investigated for the film uniformity and deposition rate of a-C:H films on glass substrate and polymeric materials in the presence of the modulated crossed magnetic field. We used Plasma CVD, i.e, using a crossed electromagnetic field, for uniform depositing thin film. The optimum discharge condition has been discussed for the gas pressure, the magnetic flux density and the distance between substrate and electrodes, As a result, it is found that the optimum discharge conditions are $CH_4$ concentration $CH_4$=10 %, modulated magnetic flux density B=48 Gauss, pressure P=100 mTorr, discharge power supply voltage V=l kV under these experimental conditions. By using these experimental condition, it is possible to prepare the most uniform film extends over about 160 mm of the film width. In this study, we deposited a-C:H thin film on glass substrate, and have a plan that using this condition, study depositing a-C:H thin film on polymeric substrate in next studies.

Pulsed Magnet ron Sputtering Deposit ion of DLC Films Part II : High-voltage Bias-assisted Deposition

  • Chun, Hui-Gon;Lee, Jing-Hyuk;You, Yong-Zoo;Ko, Yong-Duek;Cho, Tong-Yul;Nikolay S. Sochugov
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.148-154
    • /
    • 2003
  • Short ($\tau$=40 $mutextrm{s}$) and high-voltage ($U_{sub}$=2~8 kV) negative substrate bias pulses were used to assist pulsed magnetron sputtering DLC films deposition. Space- and time-resolved probe measurements of the plasma characteristics have been performed. It was shown that in case of high-voltage substrate bias spatial non-uniformity of the magnetron discharge plasma density greatly affected DLC deposition process. By Raman spectroscopy it was found that maximum percentage of s $p^3$-bonded carbon atoms (40 ~ 50%) in the coating was attained at energy $E_{c}$ ~700 eV per deposited carbon atom. Despite rather low diamond-like phase content these coatings are characterized by good adhesion due to ion mixing promoted by high acceleration voltage. Short duration of the bias pulses is also important to prevent electric breakdowns of insulating DLC film during its growth.wth.