Browse > Article
http://dx.doi.org/10.3807/JOSK.2009.13.1.065

Parametric Studies of Pulsed Laser Deposition of Indium Tin Oxide and Ultra-thin Diamond-like Carbon for Organic Light-emitting Devices  

Tou, Teck-Yong (Faculty of Engineering, Multimedia University)
Yong, Thian-Khok (Faculty of Engineering, Multimedia University)
Yap, Seong-Shan (Faculty of Engineering, Multimedia University)
Yang, Ren-Bin (Faculty of Engineering, Multimedia University)
Siew, Wee-Ong (Faculty of Engineering, Multimedia University)
Yow, Ho-Kwang (Faculty of Engineering, Multimedia University)
Publication Information
Journal of the Optical Society of Korea / v.13, no.1, 2009 , pp. 65-74 More about this Journal
Abstract
Device quality indium tin oxide (ITO) films are deposited on glass substrates and ultra-thin diamond-like carbon films are deposited as a buffer layer on ITO by a pulsed Nd:YAG laser at 355 nm and 532 nm wavelength. ITO films deposited at room temperature are largely amorphous although their optical transmittances in the visible range are > 90%. The resistivity of their amorphous ITO films is too high to enable an efficient organic light-emitting device (OLED), in contrast to that deposited by a KrF laser. Substrate heating at $200^{\circ}C$ with laser wavelength of 355 nm, the ITO film resistivity decreases by almost an order of magnitude to $2{\times}10^{-4}\;{\Omega}\;cm$ while its optical transmittance is maintained at > 90%. The thermally induced crystallization of ITO has a preferred <111> directional orientation texture which largely accounts for the lowering of film resistivity. The background gas and deposition distance, that between the ITO target and the glass substrate, influence the thin-film microstructures. The optical and electrical properties are compared to published results using other nanosecond lasers and other fluence, as well as the use of ultra fast lasers. Molecularly doped, single-layer OLEDs of ITO/(PVK+TPD+$Alq_3$)/Al which are fabricated using pulsed-laser deposited ITO samples are compared to those fabricated using the commercial ITO. Effects such as surface texture and roughness of ITO and the insertion of DLC as a buffer layer into ITO/DLC/(PVK+TPD+$Alq_3$)/Al devices are investigated. The effects of DLC-on-ITO on OLED improvement such as better turn-on voltage and brightness are explained by a possible reduction of energy barrier to the hole injection from ITO into the light-emitting layer.
Keywords
Indium tin oxide; Pulsed Nd:YAG laser; Background gases; OLED;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. T. Zhang, Y. C. Zhou, J. M. Zhao, Y. Q. Zhan, Z. J. Wang, Y. Wu, X. M. Ding, and X. Y. Hou, 'Role of hole playing in improving performance of organic light-emitting devices with an Al2O3 layer inserted at the cathode-organic interface,' Appl. Phys. Lett. 89, 043502-1-3 (2006)
2 Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, 'Enhanced brightness and efficiency in organic electroluminescent devices using $\SiO_2$ buffer layers,' Appl. Phys. Lett. 74, 2227-2229 (1999)   DOI   ScienceOn
3 B. J. Chen and X. W. Sun, 'The role of $\MgF_2$ buffer layer in tris-(8-hydroxyquinoline)aluminium-based organic light-emitting devices with Mg:Ag cathode,' Semicon. Sci. Tech. 20, 801-804 (2005)   DOI   ScienceOn
4 C. H. Yi, Y. Y. Shigesato, I. Yasuui, and S. Takaki, 'Microstructure of low-resistivity tin-doped indium oxide films deposited at 150 $\sim200^\circC$,' Jpn. J. Appl. Phys. 34, L244-L247 (1995)   DOI   ScienceOn
5 E. Burstein, 'Anomalous optical absorption limit in InSb,' Phys. Rev. 93, 632-633 (1954)   DOI
6 G. Wantz, L.Hirsch, N. Huby, L.Vignau, J. F. Silvain, A. S. Barriere, and J. P. Parneix, 'Correlation between the indium tin oxide morphology and the performances of polymer light-emitting diodes,' Thin Solid Films 485, 247-251 (2005)   DOI   ScienceOn
7 F. Li, H. Tang, J. Shinar, O. Resto, and S. Z. Weisz, 'Effects of aquaregia treatment of indium–tin–oxide substrates on the behavior of double layered organic lightemitting diodes,' Appl. Phys. Lett. 70, 2741-2743 (1997)   DOI   ScienceOn
8 L. Meng and M. P. dos Santos, 'Properties of indium tin oxide (ITO) films prepared by r.f. reactive magnetron sputtering at different pressures,' Thin Solid Films 303, 151-155 (1997)   DOI   ScienceOn
9 C. G. Choi, K. No, W. J. Lee, H. G. Kim, S. O. Jung, W. J. Lee, W. S. Kim, S. J. Kim, and C. Yoon, 'Effects of oxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by d.c. magnetron sputtering,' Thin Solid Films 258, 274-278 (1995)   DOI   ScienceOn
10 Y. Zhao, S. Y. Liu, and J. Y. Hou, 'Effect of LiF buffer layer on the performance of organic electroluminescent devices,' Thin Solid Films 397, 208-210 (2001)   DOI   ScienceOn
11 J. Xiao, Z. B. Deng, C. J. Liang, D. H. Xu, Y. Xu, and D. Guo, 'Effect of LiF buffer layer on the performance of organic electroluminescent devices,' Physica E 28, 323-327 (2005)   DOI   ScienceOn
12 K. Han, Y. Yi, W. J. Song, S. W. Cho, P. E. Jeon, H. Lee, C. N. Whang, and K. Jeong, 'Dual enhancing properties of LiF with varying positions inside organic light-emitting devices,' Org. Electron. 9, 30-38 (2008)   DOI   ScienceOn
13 H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, 'Improved performances of organic light-emitting diodes with metal oxide as anode buffer,' J. Appl. Phys. 101, 026105-1-3 (2007)   DOI   ScienceOn
14 H. Izumi, T. Ishihara, H. Yoshioka, and M. Motoyama, 'Electrical properties of crystalline ITO films prepared at room temperature by pulsed laser deposition on plastic substrates,' Thin Solid Films 411, 32-35 (2002)   DOI   ScienceOn
15 J. P. Zheng and H. S. Kwok, 'Low resistivity indium tin oxide films by pulsed laser deposition,' Appl. Phys. Lett. 63, 1-3 (1993)   DOI   ScienceOn
16 H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, 'Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,' J. Appl. Phys. 86, 6451-6461 (1999)   DOI
17 H. Kim, J. S. Horwitz, G. P. Kushto, Z. H. Kafafi, and D. B. Chrisey, 'Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes,' Appl. Phys. Lett. 79, 284-286 (2001)   DOI   ScienceOn
18 T. K. Yong, S. S. Yap, G. Safran, and T. Y. Tou, 'Pulsed Nd: YAG laser depositions of ITO and DLC films for OLED applications,' Appl. Surf. Sci 253, 4955-4959 (2007)   DOI   ScienceOn
19 K. Lminouni, C. Legrand, C. Dufour, and A. Chapoton, 'Diamond-like carbon films as electron-injection layer in organic light emitting diodes,' Appl. Phys. Lett. 78, 2437-2439 (2001)   DOI   ScienceOn
20 B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, 'Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,' Appl. Phys. Lett. 86, 063506-1-3 (2005)   DOI   ScienceOn
21 S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou, 'Buffer-layer-induced barrier reduction: role of tunneling in organic light-emitting devices,' Appl. Phys. Lett. 84, 425-427 (2004)   DOI   ScienceOn
22 J. M. Zhao, Y. Q. Zhan, S. T. Zhang, X. J. Wang, Y. C. Zhou, Y. Wu, Z. J. Wang, X. M. Ding, and X. Y. Hou, 'Mechanisms of injection enhancement in organic light-emitting diodes through insulating buffer,' Appl. Phys. Lett. 84, 5377-5379 (2004)   DOI   ScienceOn
23 M. Goes, J. W. Verhoeven, H. Hofstraat, and K. Brunner, 'OLED and PLED devices employing electrogenerated, intramolecular charge-transfer fluorescence,' Chem. Phys. Chem. 4, 349-358 (2003)   DOI   ScienceOn
24 R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, 'Tin doped indium oxide thin films: electrical properties,' J. Appl. Phys. 83, 2631-2645 (1998)   DOI   ScienceOn
25 D. W. Han, S. M. Jeong, S. J. Lee, N. C. Yang, and D. H. Suh, 'Electron injection enhancement by diamondlike carbon film in organic electroluminescence devices,' Thin Solid Films 420-421, 190-194 (2002)   DOI   ScienceOn
26 S. H. Choi, S. M. Jeong, W. H. Koo, S. J. Jo, H. K. Baik, S. J. Lee, K. M. Song, and D. W. Han, 'Diamond-like carbon as a buffer layer in polymeric electroluminescent device,' Thin Solid Films 483, 351-357 (2005)   DOI   ScienceOn
27 S. S. Yap, R. B. Yang, H. Y. Yow, and T. Y. Tou, 'Enhanced reliability by diamond-like carbon in single-layer organic light emitting diodes,' Electronic Letters 42, 114-115 (2006)   DOI   ScienceOn
28 H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films (Institute of Physics Publishing, Bristol and Philadelphia, 1995)
29 S. A. Haque, S. Koops, N. Tokmoldin, J. R. Durrant, J. Huang, D. D. C. Bradley, and E. Palomares, 'A multilayered polymer light-emitting diode using a nanocrystalline metal-oxide film as a charge-injection electrode,' Adv. Mater. 19, 683-687 (2007)   DOI   ScienceOn
30 A. C. Ferrari and J. Robertson, 'Resonant raman spectroscopy of disordered, amorphous, and diamond-like carbon,' Phys. Rev. B 64, 075414-13 (2001)   DOI   ScienceOn
31 E. Holmelund, B. Thestrup, J. Schou, N. B. Larsen, M. M. Nielsen, E. Johnson, and S. Tougaard, 'Capacitance–voltage characteristics of liquid crystal displays with periodic interdigital electrodes,' Appl. Phys. A 74, 147-149 (2002)   DOI   ScienceOn
32 C. Casiraghi, A. C. Ferrari, R. Ohr, A. J. Flewitt, D. P. Chu, and J. Robertson, 'Dynamic roughening of tetrahedral amorphous carbon,' Phys. Rev. Lett. 91, 226104-1-4 (2003)   DOI   ScienceOn
33 K. Yamamoto, Y. Koga, S. Fujiwara, F. Kokai, and R. B. Heimann, 'Dependence of the sp3 bond fraction on the laser wavelength in thin carbon films prepared by pulsed laser deposition,' Appl. Phys. A: Mater. 66, 115-117 (1998)   DOI
34 J. Robertson, 'Mechanism of $\sp^3$ bond formation in the growth of diamond-like carbon,' Diamond Relat. Mater. 14, 942-948 (2005)   DOI   ScienceOn
35 B. Thestrup, J. Schou, A. Nordskov, N. B. Larsen, 'Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres,' Appl. Surf. Sci. 142, 248-252 (1999)   DOI   ScienceOn
36 J. B. Choi, J. H. Kim, K. A. Jeon, and S. Y. Lee, 'Properties of ITO films on glass fabricated by pulsed laser deposition,' Mater. Sci. Eng. B 102, 376-379 (2003)   DOI   ScienceOn
37 H. W. Choi, S. Y. Kim, W. K. Kim, and J. L. Lee, 'Enhancement of electron injection in inverted topemitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,' Appl. Phys. Lett. 87, 082102-1-3 (2005)   DOI   ScienceOn
38 B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, 'Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,' Appl. Phys. Lett. 86, 63506-1-3 (2005)   DOI   ScienceOn
39 F. O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, and M. Motoyama, 'Highly conducting indium tin oxide (ITO) thin films deposited by pulsed laser ablation,' Thin Solid Films 350, 79-84 (1999)   DOI   ScienceOn
40 M. A. Morales-Paliza, M .B. Huang, and L. C. Feldman, 'Nitrogen as background gas in pulsed-laser deposition growth of indium tin oxide films at room temperature,' Thin Solid Films 429, 220-224 (2003)   DOI   ScienceOn
41 F. O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, and M. Motoyama, 'Effects of stress on the structure of indium-tin-oxide thin films grown by pulsed laser deposition,' J. Mater. Sci.: Mater. Electron. 12, 57-61 (2001)   DOI   ScienceOn
42 Z. X. Wu, L. D. Wang, H. F. Wang, Y. D. Gao, and Y. Qiu, 'Charge tunneling injection through a thin teflon film between the electrodes and organic semiconductor layer: relation to morphology of the teflon film,' Phys. Rev. B. 74, 165307-1-7 (2006)   DOI   ScienceOn
43 X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, 'Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode,' J. Appl. Phys. 95, 3828-3830 (2004)   DOI   ScienceOn
44 H. Bisht, H.-T. Eun, A. Mehrtens, and M. A. Aegerter, 'Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates,' Thin Solid Films 351, 109-114 (1999)   DOI   ScienceOn
45 T. Yoshitake, T. Nishiyama, H. Aoki, K. Suizu, K. Takahashi, and K. Nagayama, 'The effects of substrate temperature and laser wavelength on the formation of carbon thin films by pulsed laser deposition,' Diamond Relat. Mater. 8, 463-465 (1999)   DOI   ScienceOn
46 H. J. Li, R. H. Zhu, X. Y. Li, Z. J. Wang, and B. C. Yang, 'Determination of the optimal thickness of inserted LiF in bilayer organic light-emitting devices,' Solid State Commun. 144, 445-447 (2007)   DOI   ScienceOn
47 H. W. Choi, S. Y. Kim, W. K. Kim, K. Hong, and J. L. Lee, 'Effect of magnesium oxide buffer layer on performance of inverted top-emitting organic light-emitting diodes,' J. Appl. Phys. 100, 064106-1-6 (2006)   DOI   ScienceOn