• 제목/요약/키워드: Device stress

검색결과 817건 처리시간 0.021초

Thyristor 소자의 스트레스에 따른 소자파괴 메커니즘 연구 (Investigation of the thyristor failure mechanism induced by stress)

  • 김형우;서길수;김상철;강인호;김남균;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.129-130
    • /
    • 2005
  • The electrical stress has a major effect on the long-term reliability of the thyristor. Therefore, it is needed to analyze the relationship between reliability and stress. In this paper, we investigate the device failure mechanism which induced by the stress. And also investigate the effect of the thermal stress on the device failure and relationship between electrical and thermal stress. Two-dimensional process simulator ATHENA and device simulator ATLAS are used to analyze the failure mechanism of the device.

  • PDF

아동의 학업스트레스, 그릿, 집행기능 곤란 및 미디어기기 과의존 간의 구조적 관계 (Structural Relationship among Children's Academic Stress, Grit, Executive Function Difficulty, and Media Device Addiction)

  • 공영숙;임지영
    • Human Ecology Research
    • /
    • 제59권3호
    • /
    • pp.387-400
    • /
    • 2021
  • This study examined the structural relationship between children's academic stress, grit, executive function difficulty, and media device addiction. Data on 1,132 children and their mothers from the 11th (2018)Panel Study on Korean Children were used for the study. Data were collected by Academic Stress Scale, Grit Scale-Children, Child-Adolescent Self-reported Executive Function Difficulty Screening Questionnaire, and K-Internet Addiction Scale. Data were analyzed using SPSS 25.0 and AMOS 23.0 program with Pearson correlation, structural equation model and bootstrapping. The main results were as follows. 1) Children's academic stress had a negative influence on their grit. 2) Children's grit had a negative influence on their executive function difficulty and media device addiction. 3) Children's executive function difficulty had a positive influence on their media device addiction. 4) The relationship between children's academic stress and media device addiction was mediated by their grit and executive function difficulty. This study is significant in the sense that it found protective factors and risk factors for children's addiction to media devices. We suggest that children's grit be improved, and their academic stress and executive function difficulty be reduced to prevent and mediate children's media device addiction.

Development of the Microfluidic Device to Regulate Shear Stress Gradients

  • Kim, Tae Hyeon;Lee, Jong Min;Ahrberg, Christian D.;Chung, Bong Geun
    • BioChip Journal
    • /
    • 제12권4호
    • /
    • pp.294-303
    • /
    • 2018
  • Shear stress occurs in flowing liquids, especially at the interface of a flowing liquid and a stationary solid phase. Thus, it occurs inside the artery system of the human body, where it is responsible for a number of biological functions. The shear stress level generally remains less than $70dyne/cm^2$ in the whole circulatory system, but in the stenotic arteries, which are constricted by 95%, a shear stress greater than $1,000dyne/cm^2$ can be reached. Methods of researching the effects of shear stress on cells are of large interest to understand these processes. Here, we show the development of a microfluidic device for generating shear stress gradients. The performance of the shear stress gradient generator was theoretically simulated prior to experiments. Through simple manipulations of the liquid flow, the shape and magnitude of the shear stress gradients can be manipulated. Our microfluidic device consisted of five portions divided by arrays of micropillars. The generated shear stress gradient has five distinct levels at 8.38, 6.55, 4.42, 2.97, and $2.24dyne/cm^2$. Thereafter, an application of the microfluidic device was demonstrated testing the effect of shear stress on human umbilical vein endothelial cells.

Prediction of thermal stress in concrete structures with various restraints using thermal stress device

  • Cha, Sang Lyul;Lee, Yun;An, Gyeong Hee;Kim, Jin Keun
    • Computers and Concrete
    • /
    • 제17권2호
    • /
    • pp.173-188
    • /
    • 2016
  • Generally, thermal stress induced by hydration heat causes cracking in mass concrete structures, requiring a thorough control during the construction. The prediction of the thermal stress is currently undertaken by means of numerical analysis despite its lack of reliability due to the properties of concrete varying over time. In this paper, a method for the prediction of thermal stress in concrete structures by adjusting thermal stress measured by a thermal stress device according to the degree of restraint is proposed to improve the prediction accuracy. The ratio of stress in concrete structures to stress under complete restraint is used as the degree of restraint. To consider the history of the degree of restraint, incremental stress is predicted by comparing the degree of restraint and the incremental stress obtained by the thermal stress device. Furthermore, the thermal stresses of wall and foundation predicted by the proposed method are compared to those obtained by numerical analysis. The thermal stresses obtained by the proposed method are similar to those obtained by the analysis for structures with internally as well as externally strong restraint. It is therefore concluded that the prediction of thermal stress for concrete structures with various boundary conditions using the proposed method is suggested to be accurate.

Design, Fabrication, and Application of a Microfluidic Device for Investigating Physical Stress-Induced Behavior in Yeast and Microalgae

  • Oh, Soojung;Kim, Jangho;Ryu, Hyun Ryul;Lim, Ki-Taek;Chung, Jong Hoon;Jeon, Noo Li
    • Journal of Biosystems Engineering
    • /
    • 제39권3호
    • /
    • pp.244-252
    • /
    • 2014
  • Purpose: The development of an efficient in vitro cell culture device to process various cells would represent a major milestone in biological science and engineering. However, the current conventional macro-scale in vitro cell culture platforms are limited in their capacity for detailed analysis and determination of cellular behavior in complex environments. This paper describes a microfluidic-based culture device that allows accurate control of parameters of physical cues such as pressure. Methods: A microfluidic device, as a model microbioreactor, was designed and fabricated to culture Saccharomyces cerevisiae and Chlamydomonas reinhardtii under various conditions of physical pressure stimulus. This device was compatible with live-cell imaging and allowed quantitative analysis of physical cue-induced behavior in yeast and microalgae. Results: A simple microfluidic-based in vitro cell culture device containing a cell culture channel and an air channel was developed to investigate physical pressure stress-induced behavior in yeasts and microalgae. The shapes of Saccharomyces cerevisiae and Chlamydomonas reinhardtii could be controlled under compressive stress. The lipid production by Chlamydomonas reinhardtii was significantly enhanced by compressive stress in the microfluidic device when compared to cells cultured without compressive stress. Conclusions: This microfluidic-based in vitro cell culture device can be used as a tool for quantitative analysis of cellular behavior under complex physical and chemical conditions.

Verification for the design limit margin of the power device using the HALT reliability test

  • Chang, YuShin
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권11호
    • /
    • pp.67-74
    • /
    • 2018
  • The verification for the design limit margin of the power device for the information communication and surveillance systems using HALT(Highly Accelerated Life Test) reliability test is described. The HALT reliability test performs with a step stress method which change condition until the marginal step in a design and development phase. The HALT test methods are the low temperature(cold) step stress test, the high temperature(hot) step stress test, the thermal shock cyclic stess test, and the high temperature destruct limit(hot DL) step stress test. The power device is checked the operating performance during the test. In this paper, the HALT was performed to find out the design limit margin of the power device.

토양 물리성 측정을 위한 디지털 장치 개발(I) - 디지털 전단저항 측정장치 - (Development of a Digital Device for Measuring Soil Physical Properties (I) - Digital Shear Stress Sensor -)

  • 박준걸;이규승;조성찬;이동훈;장영창;노광모
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.416-422
    • /
    • 2008
  • This study was performed to design and construct a digital soil shear stress sensor in order to replace the conventional devices for measuring soil shear property. The developed digital shear stress measuring device can store measured data with GPS position information as a vector format into a computer. Based on the experiments at various field conditions, the measuring characteristic of the device was quite similar to that of a conventional device, SR-2 that has been a major tool to measure the soil shear property. It was concluded that the digital shear stress measuring device was an effective and comprehensive sensor for measuring soil shear property.

A Mobile Stress Management System utilizing Variable Voice Information According to the Wearing Area

  • Kang, Byeongsoo;Vannroath, Ky;Kang, Hyun-syug
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권6호
    • /
    • pp.95-100
    • /
    • 2017
  • Recently, as stress has become a major threat to people's health, there is a growing interest in wearable stress management services for stress relief. In this paper, we developed a wearable device(Care-on) capable of extracting changeable human voice information at each site and a Healthcare App(S-Manager) that enables stress management in real time using the wearable device. It collects and analyzes variable real-time voice information for each part of the person's body. And It also provides the ability to monitor stress conditions in a mobile environment and provide feedback on the analysis results in step by step in the mobile environment. We tested the developed wearable devices and app in a mobile environment and analyzed the results to confirm their usefulness.

P-채널 poly-Si TFT's의 Alternate Bias 스트레스 효과 (Effect of Alternate Bias Stress on p-channel poly-Si TFT's)

  • 이제혁;변문기;임동규;정주용;이진민
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.489-492
    • /
    • 1999
  • The effects of alternate bias stress on p-channel poly-Si TPT's has been systematically investigated. It has been shown that the application of alternate bias stress affects device degradation for the negative bias stress as well as device improvement for the positive bias stress. This effects have been related to the hot carrier injection into the gate oxide rather than the generation of defect states within the poly-Si/SiO$_2$ under bias stress.

  • PDF

Analysis of the Failure Stress in Pyrotechnically Releasable Mechanical Linking Device

  • Lee, Yeung-Jo;Kim, Dong-Jin;Kang, Won-Gyu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.813-822
    • /
    • 2008
  • The present work has been developed the interpretation processor including analysis of the failure stress in pyrotechnically releasable mechanical linking device, which has the release characteristic without fragmentation and pyro-shock, using SoildWorks, COSMOS Works and ANSYS programs. The aim of the invention is to propose a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. The pyrotechnically releasable mechanical linking device according to the invention is simple, compact and inexpensive in structure. It is simple to implement and permit the use of only a reduced quantity of pyrotechnic composition, such composition possibly being devoid of any primary explosive at all. The present work is only focused on the design of structure and the material characteristics. To analyze the fracture morphology resulted from tensile test in the different ball type bolts, the present work has been performed to estimate the failure stress of material and to make the same result from tensile test. The failure stress of SUS 630 in ductile material is approximately 1050 Mpa. The failure stress of SUS 420 in brittle material is about 1790 Mpa. Among the models used the ductile material, the model 6 is suitable a design of structure compared to that of other models. The use of this interpretation processor developed the present work could be extensively helped to estimate the failure stress of material having a complex geometry such as the ball type bolt

  • PDF