• Title/Summary/Keyword: Detection limits

Search Result 940, Processing Time 0.032 seconds

Development of Liposome Immunoassay for Salmonella spp. using Immunomagnetic Separation and Immunoliposome

  • Shin, Jung-Hee;Kim, Myung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.10
    • /
    • pp.1689-1694
    • /
    • 2008
  • The ability to detect Salmonella spp. is essential in the prevention of foodborne illness. This study examined a Salmonella spp. detection method involving the application of immunomagnetic separation and immunoliposomes (IMS/IL) encapsulating sulforhodamine B (SRB), a fluorescent dye. A quantitative assay was conducted by measuring the fluorescence intensity of SRB that was produced from an immunomagnetic bead-Salmonella spp.-immunoliposome complex. The results indicated detection limits of $2.7{\times}10^{5}$ and $5.2{\times}10^{3}$ CFU/ml for Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) and Salmonella enterka subsp. enterka serovar Typhimurium (S. Typhimurium), respectivley. The signal/noise ratio was improved by using 4% skim milk as a wash solution rather than 2% BSA. In addition, higher fluorescence intensity was obtained by increasing the liposome size. Compared with the conventional plating method, which takes 3-4 days for the isolation and identification of Salmonella spp., the total assay time of to h only including 6 h of culture enrichment was necessary for the Salmonella detection by IMS/IL. These results indicate that the IMS/ IL has great potential as an alternative rapid method for Salmonella detection.

A Exposure Concentration and Composition of Organic Solvents by the type of workplace in Mixed Organic Solvents use Companies (혼합 유기용재 취급작업장의 공정별 유기용제 구성성분 및 노출농도)

  • 원정일;김기환;신창섭
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.75-87
    • /
    • 2000
  • This study was conducted to investigate the composition, detection rate, and exposure concentration of the airborne organic solvents from the working environmental measurements of total 4181 different type of workplace in 3280 workshops in which organic solvents are used. The results are as follows : 1. For all workplaces except washing, the detection rate of toluene and benzene were 80% and 20%, respectively. 2. The number of detection of aromatic hydrocarbon and ketone were ranged 1.41-2.39 and 0.62-0.90 per a sample in all workplaces except that showed 1.01 in washing. 3. The mean of detection frequency was $3.3{\pm}2.5$ in all workplaces and there was no significant difference among that of each workplaces. 4. The airborne concentrations of methyl methacrylate, ethyl alcohol, methyl alcohol, and ethyl ether were $43.5{\pm}47.0{\;}ppm,{\;}22.5{\pm}51.0{\;},{\;}19.8{\pm}57.6{\;}ppm,{\;}19.8{\pm}40.14{\;}ppm, respectively. And those of cellosolve, methyl cellosolve acetate, and N,N-dimethyl formamide were $4.1{\pm}4.5$ ppm, $4.0{\pm}18.5{\;}ppm$, and $5.6{\pm}7.7{\;}ppm$, respectively and exceeded the occupational exposure limits enforced by Ministry of Labor in Korea. As the above results, it is suggested that the components of organic solvents should be indentified to efficient management, of working environment and conducted the engineering control for the workplaces using the hazardous materials.

  • PDF

Simultaneous Determination of Ranitidine and Metronidazole at Poly(thionine) Modified Anodized Glassy Carbon Electrode

  • Rahman, Md. Mahbubur;Li, Xiao-Bo;Jeon, Young-Deok;Lee, Ho-Joon;Lee, Soo Jae;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.90-94
    • /
    • 2012
  • A simple and sensitive electrochemical sensor for simultaneous and quantitative detection of ranitidine (RT) and metronidazole (MT) was developed, based on a poly(thionine)-modified anodized glassy carbon electrode (PTH/GCE). The modified electrode showed the excellent electrocatalytic activity towards the reduction of both RT and MT in 0.1M phosphate buffer solution (PBS, pH 7.0). The peak-to-peak separations (${\Delta}E_p$) for the simultaneous detection of RT and MT between the two reduction waves in CV and DPV were increased significantly from ca. 100 mV at anodized GCE, to ca. 550 mV at the PTH/GCE. The reduction peak currents of RT and MT were linear over the range from 35 to $500{\mu}M$ in the presence of 200 and $150{\mu}M$ of RT and MT, respectively. The sensor showed the sensitivity of 0.58 and $0.78{\mu}A/cm^2/{\mu}M$ with the detection limits (S/N = 3) of 1.5 and $0.96{\mu}M$, respectively for RT and MT.

Analysis of Flavonoids in Concentrated Pomegranate Extracts by HPLC with Diode Array Detection

  • Lee, Jeong-Hwan;Kim, Seung-Deok;Lee, Ja-Young;Kim, Kyung-Nam;Kim, Hyun-Su
    • Food Science and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.171-174
    • /
    • 2005
  • Three flavonoid compounds - quercetin, luteolin, and kaempferol - were analyzed from two commercially available concentrated pomegranate extracts produced in Turkey and Italy, respectively. The samples were freeze-dried and hydrolyzed by 0.4 M hydrochloric acid in 50% ethanol at $80^{\circ}C$. HPLC (high-performance liquid chromatography) with DAD (diode array detection) at a wavelength of 260 nm was used for the detection of the three flavonoids. The detection limits of the three compounds were in hundreds of picograms and the signal-to-noise ratio ranged from 4 to 5: quercetin: >308 pg, s/n=4.0; luteolin: >262 pg, s/n=4.5; kaempferol: >688 pg, s/n=5.0. Quercetin, but not luteolin and kaempferol, was detected in the both pomegranate extracts. The concentrations of quercetin were $49.7\;{\mu}g/g$ and $27.7\;{\mu}g/g$ in the two pomegranate extracts made in Turkey and Italy, respectively.

Simultaneous Detection of Cd (II), Pb (II), Cu (II), and Hg (II) Ions in Dye Waste Water Using a Boron Doped Diamond Electrode with DPASV

  • Yoon, Jang-Hee;Yang, Jee-Eun;Kim, Jong-Phil;Bae, Jong-Seong;Shim, Yoon-Bo;Won, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.140-145
    • /
    • 2010
  • The simultaneous detection of Cd (II), Pb (II), Cu (II), and Hg (II) ions in aqueous medium using a BDD electrode with DPASV is described. XPS was used to characterize the chemical states of trace metal ions deposited on the BDD electrode surface. Experimental parameters that affect response, such as pH, deposition time, deposition potential, and pulse amplitude were carefully optimized. The detection limits for Cd (II), Pb (II), Cu (II), and Hg (II) ions were 3.5 ppb, 2.0 ppb, 0.1 ppb and 0.7 ppb, respectively. The application of the BDD electrode on the electrochemical pretreatment for the simultaneous metal detection in the dye waste water was also investigated.

Determination of Aqueous Ammonia with Indophenol Method : Comparision and Evaluation for the Reaction-Rate, Equilibrium and Flow-Injection Analysis Methods (인도페놀법을 이용한 수용액 중 암모니아 정량에 관한 연구 : 평형법, 반응속도법, 흐름주입분석법의 비교와 평가)

  • 정형근;김범식
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.91-103
    • /
    • 1995
  • The reaction rate, equilibrium, and flow injection analysis methods were fundamentally evaluated for the determination of aqueous ammonia. The selected indophenol blue method was based on the formation of indophenol blue in which ammonium ion reacted with hypochlorite and phenol in alkaline solution. In the optimized reaction condition, the reaction followed 1st order reaction kinetics and the final product was stable. The absorbance measurements before and after the equilibrium were utilized for the reaction rate and equilibrium methods. The reaction rate methods, based on the relative analytical signals for the possibility of eliminating interferents, were shown to have good linear calibration curves but the detection limit and the calibration sensitivity were poorer than those in the equilibrium method. The detection limits were 32-49 pub and 24 pub for the reaction rate and equilibrium methods, respectively In the flow injection analysis, the absorbance was measured before the equilibrium reached and thus resulted in 30% reduction of calibration sensitivity. However, the detection limit was 11 ppb, indicating that the peak-to-peak noise for the blank was remarkably improved. Compared to the manual methods, the optimized experimental condition in a closed reaction system reduced the blank absorbance and the inclusion of ammonia from the atmosphere was prevented. In addition, highly reproducible mixing of sample and reagents and analytical data extracted from continuous recording showed excellent reproducibility.

  • PDF

Development of a Multiplex RT-PCR for the Simultaneous Detection of Three Viruses in Cherry Plants

  • Park, Chung Youl;Park, Jeongran;Lee, Geunsik;Yi, Seung-In;Kim, Byeong Hoon;Eom, Jung Sik;Lee, Som Gyeol;Kim, Hongsup
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.233-236
    • /
    • 2018
  • A multiplex RT-PCR (mRT-PCR) assay was developed for the detection of the recently reported viruses, Cherry virus A (CVA), Little cherry virus 1 (LChV-1), and Little cherry virus 2 (LChV-2), in cherry plants in Korea. Eight sets of primers were designed for each virus and their specificity was tested by using various combinations of mixed primer sets. From the designed primer sets, one combination was selected and further evaluated to estimate the optimum temperature and detection limits of the mRT-PCR. A newly developed mRT-PCR assay was also tested using 20 cherry samples collected in the field. This mRT-PCR assay may be a useful tool for field surveys of diseases and the rapid detection of these three viruses in cherry plants.

Label-free and sensitive detection of purine catabolites in complex solutions by surface-enhanced raman spectroscopy

  • Davaa-Ochir, Batmend;Ansah, Iris Baffour;Park, Sung Gyu;Kim, Dong-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.342-352
    • /
    • 2022
  • Purine catabolite screening enables reliable diagnosis of certain diseases. In this regard, the development of a facile detection strategy with high sensitivity and selectivity is demanded for point-of-care applications. In this work, the simultaneous detection of uric acid (UA), xanthine (XA), and hypoxanthine (HX) was carried out as model purine catabolites by surface-enhanced Raman Spectroscopy (SERS). The detection assay was conducted by employing high-aspect ratio Au nanopillar substrates coupled with in-situ Au electrodeposition on the substrates. The additional modification of the Au nanopillar substrates via electrodeposition was found to be an effective method to encapsulate molecules in solution into nanogaps of growing Au films that increase metal-molecule contact and improve substrate's sensitivity and selectivity. In complex solutions, the approach facilitated ternary identification of UA, XA, and HX down to concentration limits of 4.33 𝜇M, 0.71 𝜇M, and 0.22 𝜇M, respectively, which are comparable to their existing levels in normal human physiology. These results demonstrate that the proposed platform is reliable for practical point-of-care analysis of biofluids where solution matrix effects greatly reduce selectivity and sensitivity for rapid on-site disease diagnosis.

Rapid and sensitive detection of Salmonella species targeting the hilA gene using a loop-mediated isothermal amplification assay

  • Chu, Jiyon;Shin, Juyoun;Kang, Shinseok;Shin, Sun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.30.1-30.8
    • /
    • 2021
  • Salmonella species are among the major pathogens that cause foodborne illness outbreaks. In this study, we aimed to develop a loop-mediated isothermal amplification (LAMP) assay for the rapid and sensitive detection of Salmonella species. We designed LAMP primers targeting the hilA gene as a universal marker of Salmonella species. A total of seven Salmonella species strains and 11 non-Salmonella pathogen strains from eight different genera were used in this study. All Salmonella strains showed positive amplification signals with the Salmonella LAMP assay; however, there was no non-specific amplification signal for the non-Salmonella strains. The detection limit was 100 femtograms (20 copies per reaction), which was ~1,000 times more sensitive than the detection limits of the conventional polymerase chain reaction (PCR) assay (100 pg). The reaction time for a positive amplification signal was less than 20 minutes, which was less than one-third the time taken while using conventional PCR. In conclusion, our Salmonella LAMP assay accurately detected Salmonella species with a higher degree of sensitivity and greater rapidity than the conventional PCR assay, and it may be suitable for point-of-care testing in the field.

A Study on Improved Detection Signature System in Hacking Response of One-Line Games (온라인 게임 해킹대응에서 Signature 기반 탐지방법 개선에 관한 연구)

  • Lee, Chang Seon;Yoo, Jinho
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.1
    • /
    • pp.105-118
    • /
    • 2016
  • Game companies are frequently attacked by attackers while the companies are servicing their own games. This paper analyzes the limit of the Signature detection method, which is a way of detecting hacking modules in online games, and then this paper proposes the Scoring Signature detection scheme to make up for these problems derived from the limits. The Scoring Signature detection scheme enabled us to detect unknown hacking attacks, and this new scheme turned out to have more than twenty times of success than the existing signature detection methods. If we apply this Scoring Signature detection scheme and the existing detection methods at the same time, it seems to minimize the inconvenient situations to collect hacking modules. And also it is expected to greatly reduce the amount of using hacking modules in games which had not been detected yet.