KSII Transactions on Internet and Information Systems (TIIS)
/
v.3
no.6
/
pp.647-666
/
2009
Multiple-input multiple-output (MIMO) multiplexing is an attractive technology that increases the channel capacity without requiring additional spectral resources. The design of low complexity and high performance detection algorithms capable of accurately demultiplexing the transmitted signals is challenging. In this technical survey, we introduce the state-of-the-art MIMO detection techniques. These techniques are divided into three categories, viz. linear detection (LD), decision-feedback detection (DFD), and tree-search detection (TSD). Also, we introduce the lattice basis reduction techniques that obtain a more orthogonal channel matrix over which the detection is done. Detailed discussions on the advantages and drawbacks of each detection algorithm are also introduced. Furthermore, several recent author contributions related to MIMO detection are revisited throughout this survey.
Data races are one of the most difficult types of bugs in concurrent multithreaded systems. It requires significant time and cost to accurately detect bugs in complex large-scale programs. Although many race detection techniques have been proposed by various researchers, none of them are effective in all aspects. In this paper, we compare the performance of five recent dynamic race detection techniques: FastTrack, Acculock, Multilock-HB, SimpleLock+, and causally precedes (CP) detection. We experimentally demonstrate the strengths and weaknesses of these dynamic race detection techniques in terms of their detection capability, running time, and runtime overhead using 20 benchmark programs with different characteristics. The comparison results show that the detection capability of CP detection does not differ from that of FastTrack, and that SimpleLock+ generates the lowest overhead among the hybrid detection techniques (Acculock, SimpleLock+, and Multilock-HB) for all benchmark programs. SimpleLock+ is 1.2 times slower than FastTrack on average, but misses one true data race reported from Mutilock-HB on the large-scale benchmark programs.
Journal of the Korea Society of Computer and Information
/
v.22
no.11
/
pp.1-7
/
2017
In this paper, we introduce three monitoring filtering techniques which reduce the overheads of dynamic data race detection. It is well known that detecting data races dynamically in multi-threaded programs is quite hard and troublesome task, because the dynamic detection techniques need to monitor all execution of a multi-threaded program and to analyse every conflicting memory and thread operations in the program. Thus, the main drawback of the dynamic analysis for detecting data races is the heavy additional time and space overheads for running the program. For the practicality, we also empirically compare the efficiency of three monitoring filtering techniques. The results using OpenMP benchmarks show that the filtering techniques are practical for dynamic data race detection, since they reduce the average runtime overhead to under 10% of that of the pure detection.
Outlier detection techniques play an important role in enhancing the reliability of data communication in wireless sensor networks (WSNs). Considering the importance of outlier detection in WSNs, many outlier detection techniques have been proposed. Unfortunately, most of these techniques still have some potential limitations, that is, (a) high rate of false positives, (b) high time complexity, and (c) failure to detect outliers online. Moreover, these approaches mainly focus on either temporal outliers or spatial outliers. Therefore, this paper aims to introduce novel algorithms that successfully detect both temporal outliers and spatial outliers. Our contributions are twofold: (i) modifying the Hampel Identifier (HI) algorithm to achieve high accuracy identification rate in temporal outlier detection, (ii) combining the Gaussian process (GP) model and graph-based outlier detection technique to improve the performance of the algorithm in spatial outlier detection. The results demonstrate that our techniques outperform the state-of-the-art methods in terms of accuracy and work well with various data types.
Corrosion detection and analysis is a very important topic in reducing costs and preventing disasters. Recently, image processing techniques have been widely applied to corrosion identification and analysis. In this work, we briefly introduces traditional image processing techniques and machine learning algorithms applied to detect or analyze corrosion in various fields. Recently, machine learning, especially CNN-based algorithms, have been widely applied to corrosion detection. Additionally, research on applying machine learning to region segmentation is very actively underway. The corrosion is reddish and brown in color and has a very irregular shape, so a combination of techniques that consider color and texture, various mathematical techniques, and machine learning algorithms are used to detect and analyze corrosion. We present examples of the application of traditional image processing techniques and machine learning to corrosion detection and analysis.
Purpose: Fungal secondary metabolite (mycotoxin) contamination in foods can pose a serious threat to humans and animals. Spectroscopic techniques have proven to be potential alternative tools for early detection of mycotoxins. Thus, the aim of this review is to provide an overview of the current developments in nondestructive food safety testing techniques, particularly regarding fungal contamination testing in grains, focusing on the application of spectroscopic techniques to this problem. Methods: This review focuses on the use of spectroscopic techniques for the detection of fungi and mycotoxins in agricultural products as reported in the literature. It provides an overview of the characteristics of the main spectroscopic methods and reviews their applications in grain analysis. Results: It was found that spectroscopy has advantages over conventional methods used for fungal contamination detection, particularly when combined with chemometrics. These advantages include the rapidness and nondestructive nature of this approach. Conclusions: While spectroscopy offers many benefits for the detection of mycotoxins in agricultural products, a number of limitations exist, which must be overcome prior to widespread adoption of these techniques.
Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.
Edges are one of the most important features used in various computer vision applications. Most of the known edge detection techniques are categorized into three gropus: First two approaches are to find gray level changes using first-order or second-order differentiation. The third method uses intrinsic propoeties of edges such as the result shown during scale space filtering. In this paper, we study various kind of edge detection techniques. Two images (Lenna image and a certain image which is composed of step, ramp, roof, and other artificial edge patterns) are used to compare different edge detection techniques and to verify the advantages and disadvantage of each techniques.
Journal of Korean Association for Spatial Structures
/
v.19
no.1
/
pp.93-100
/
2019
There has been considerable recent interest in deep learning techniques for structural analysis and design. However, despite newer algorithms and more precise methods have been developed in the field of computer science, the recent effective deep learning techniques have not been applied to the damage detection topics. In this study, we have explored the structural damage detection method of truss structures using the state-of-the-art deep learning techniques. The deep neural networks are used to train knowledge of the patterns in the response of the undamaged and the damaged structures. A 31-bar planar truss are considered to show the capabilities of the deep learning techniques for identifying the single or multiple-structural damage. The frequency responses and the elasticity moduli of individual elements are used as input and output datasets, respectively. In all considered cases, the neural network can assess damage conditions with very good accuracy.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.40
no.1
/
pp.96-102
/
2003
Video copy detection is a complementary approach to watermarking. As opposed to watermarking, which relies on inserting a distinct pattern into the video stream, video copy detection techniques match content-based signatures to detect copies of video. Existing typical content-based copy detection schemes have relied on image matching. This paper proposes two new sequence matching techniques for copy detection and compares the performance with color techniques that is the existing techniques. Motion, intensity and color-based signatures are compared in the context of copy detection. Comparison of experimental results are reported on detecting copies of movie clips.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.