Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0261

Temporal and spatial outlier detection in wireless sensor networks  

Nguyen, Hoc Thai (Department of Automation, Vietnam National University of Agriculture)
Thai, Nguyen Huu (Faculty of Electrical Engineering, Vinh University of Technology Education)
Publication Information
ETRI Journal / v.41, no.4, 2019 , pp. 437-451 More about this Journal
Abstract
Outlier detection techniques play an important role in enhancing the reliability of data communication in wireless sensor networks (WSNs). Considering the importance of outlier detection in WSNs, many outlier detection techniques have been proposed. Unfortunately, most of these techniques still have some potential limitations, that is, (a) high rate of false positives, (b) high time complexity, and (c) failure to detect outliers online. Moreover, these approaches mainly focus on either temporal outliers or spatial outliers. Therefore, this paper aims to introduce novel algorithms that successfully detect both temporal outliers and spatial outliers. Our contributions are twofold: (i) modifying the Hampel Identifier (HI) algorithm to achieve high accuracy identification rate in temporal outlier detection, (ii) combining the Gaussian process (GP) model and graph-based outlier detection technique to improve the performance of the algorithm in spatial outlier detection. The results demonstrate that our techniques outperform the state-of-the-art methods in terms of accuracy and work well with various data types.
Keywords
Gaussian process; Hampel Identifier; outlier detection; spatial outlier; temporal outlier;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Treplan, L. Tran‐Thanh, and J. Levendovszky, Energy efficient reliable cooperative multipath routing in wireless sensor networks, World Acad. Sci. Eng. Technol. 68 (2010), 1366-1371.
2 J. Levendovszky et al., Fading‐aware reliable and energy efficient routing in wireless sensor networks, Comput. Commun. 33 (2010), S102-S109.   DOI
3 M. Carlos‐Mancilla, E. Lopez‐Mellado, and M. Siller, Wireless sensor networks formation: approaches and techniques, J. Sensors 2016 (2016), 1-18.
4 A. Saifullah et al., Enabling reliable, asynchronous, and bidirectional communication in sensor networks over white spaces, in Proc. ACM Conf. Embedded Netw. Sens. Syst., Delft, Netherlands, Nov. 2017, pp. 9:1-14.
5 H. Jawad et al., Energy‐efficient wireless sensor networks for precision agriculture: a review, Sensors 17 (2017), no. 8, 1781:1-45.
6 W. Li et al., Defective sensor identification for wsns involving generic local outlier detection tests, IEEE Trans. Signal Inf. Process. Netw. 2 (2016), no. 1, 29-48.   DOI
7 Z. Feng et al., A new approach of anomaly detection in wireless sensor networks using support vector data description, Int. J. Distrib. Sens. Netw. 13 (2017), no. 1, 155014771668616.
8 A. De Paola et al., Adaptive distributed outlier detection for wsns, IEEE Trans. Cybern. 45 (2015), no. 5, 902-913.   DOI
9 L. Marti et al., Anomaly detection based on sensor data in petroleum industry applications, Sensors 15 (2015), no. 2, 2774-2797.   DOI
10 X. Liu et al., Fault tolerant complex event detection in wsns: a case study in structural health monitoring, IEEE Trans. Mob. Comput. 14 (2015), no. 12, 2502-2515.   DOI
11 K. Singh and S. Upadhyaya, Outlier detection: applications and techniques, Int. J. Comp. Sci. Issue (IJCSI) 9 (2012), no. 1, 307.
12 C. O'Reilly et al., Anomaly detection in wireless sensor networks in a non‐stationary environment, IEEE Commun. Surveys Tutorials 16 (2014), no. 3, 1413-1432.   DOI
13 H. Aguinis, W. F. Cascio, and R. S. Ramani, Science's reproducibility and replicability crisis: International business is not immune, J. Int. Bus. Stud. 48 (2017), 653-663.   DOI
14 A. Abid, A. Kachouri, and A. Mahfoudhi, Outlier detection for wireless sensor networks using density‐based clustering approach, IET Wirel. Sensor Syst. 7 (2017), no. 4, 83-90.   DOI
15 F. R. Hampel, A general qualitative definition of robustness, Ann. Math. Stat. 42 (1971), 1887-1896.   DOI
16 H. Liu, S. Shah, and W. Jiang, On‐line outlier detection and data cleaning, Comput. Chem. Eng. 28 (2004), no. 9, 1635-1647.   DOI
17 H. H. W. J. Bosman et al., Spatial anomaly detection in sensor networks using neighborhood information, Inf. Fusion 33 (2017), 41-56.   DOI
18 R. K. Pearson, Outliers in process modeling and identification, IEEE Trans. Control Syst. Technol. 10 (2002), no. 1, 55-63.   DOI
19 G. Zheng et al., Contextual spatial outlier detection with metric learning, in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, Halifax, Canada, Aug. 2017, pp. 2161-2170.
20 I. Ben‐Gal, Outlier detection, Data mining and knowledge discovery handbook, Springer, New York, USA, 2005, pp. 131-146.
21 C. C. Aggarwal and P. S. Yu, Outlier detection for high dimensional data, ACM SIGMOD Record 30 (2001), 37-46.   DOI
22 A. M. Said, P. D. D. Dominic, and I. Faye, Data stream outlier detection approach based on frequent pattern mining technique, Int. J. Bus. Inf. Syst. 20 (2015), no. 1, 55-70.   DOI
23 M. S. Uddin et al., Online bad data detection using kernel density estimation, in IEEE Power Energy Soc. General Meeting, Denver, CO, USA, July 2015, pp. 1-5.
24 M. Solaimani et al., Statistical technique for online anomaly detection using spark over heterogeneous data from multi‐source vmware performance data, in IEEE Int. Conf. Big Data (Big Data), Washington, DC, USA, Oct. 2014, pp. 1086-1094.
25 M. M. Breunig et al., Lof: identifying density‐based local outliers, ACM SIGMOD Record 29 (2000), 93-104.   DOI
26 E. M. Knox and R. T. Ng, Algorithms for mining distancebased outliers in large datasets, in Proc. Int. Conf. Very Large Data Bases, New York, USA, 1998, pp. 392-403.
27 L. Tran, L. Fan, and C. Shahabi, Distance‐based outlier detection in data streams, Proc. VLDB Endowment 9 (2016), no. 12, 1089-1100.   DOI
28 A. Christy, G. Meera Gandhi, and S. Vaithyasubramanian, Cluster based outlier detection algorithm for healthcare data, Procedia Comput. Sci. 50 (2015), 209-215.   DOI
29 S. Ramaswamy, R. Rastogi, and K. Shim, Efficient algorithms for mining outliers from large data sets, ACM SIGMOD Record 29 (2000), no. 2, 427-438.   DOI
30 H.‐P. Kriegel et al., Angle‐based outlier detection in high‐dimensional data, in Proc. ACM SIGKDD Int. Conf. Knowledge Discovery Data Mining, Las Vegas, NV, USA, Aug. 2008, pp. 444-452.
31 S. Haque, M. Rahman, and S. Aziz, Sensor anomaly detection in wireless sensor networks for healthcare, Sensors 15 (2015), no. 4, 8764-8786.   DOI
32 X. Li, J. Lv, and Z. Yi, An efficient representation‐based method for boundary point and outlier detection, IEEE Trans. Neural Netw. Learn. Syst. 29 (2018), no. 1, 51-62.   DOI
33 W. Ruan et al., Tagfall: Towards unobstructive fine‐grained fall detection based on uhf passive rfid tags, in Proc. EAI Int. Conf. Mobile Ubiquitous Syst.: Comput., Netw. Services, Coimbra, Portugal, July 2015, pp. 140-149.
34 T. Fawcett, An introduction to roc analysis, Pattern Recogn. Lett. 27 (2006), no. 8, 861-874.   DOI
35 E. Lengyel, Mathematics for 3D game programming and computer graphics, Cengage Learning, Boston, MA, USA, 2012.
36 J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques, 3rd ed., Morgan Kaufmann, Elsevier, Waltham, MA, 2011.
37 B. Krishnamachari and S. Iyengar, Distributed bayesian algorithms for fault‐tolerant event region detection in wireless sensor networks, IEEE Trans. Comput. 53 (2004), no. 3, 241-250.   DOI
38 W. Weili et al., Localized outlying and boundary data detection in sensor networks, IEEE Trans. Knowl. Data Eng. 19 (2007), no. 8, 1145-1157.   DOI
39 H. T. Nguyen et al., Efficient approach for maximizing lifespan in wireless sensor networks by using mobile sinks, ETRI J. 39 (2017), no. 3, 353-363.   DOI
40 R. K. Pearson, Mining imperfect data: dealing with contamination and incomplete records, vol. 93, SIAM, Philadelphia, PA, USA, 2005.
41 H. T. Nguyen and L. Janos, Position location technique in non‐line‐of‐sight environments for wireless sensor networks, J. Comput. Sci. Cybern. 32 (2016), no. 2, 93-111.
42 C. E. Rasmussen, Gaussian processes in machine learning, Summer School on Machine Learning, Springer, 2003, pp. 63-71.
43 L. Grossi and M. Riani, Robust time series analysis through the forward search, Compstat, Springer, 2002, pp. 521-526.
44 R. Ramirez‐Padron, B. Mederos, and A. J. Gonzalez, Novelty detection using sparse online gaussian processes for visual object recognition, in Int. FLAIRS Conf., St. Pete Beach, FL, USA, May 2013, pp. 124-129.
45 M. Smith et al., Maritime abnormality detection using Gaussian processes, Knowl. Inf. Syst. 38 (2014), no. 3, 717-741.   DOI
46 J. Neyman and E. S. Pearson, On the problem of the most efficient tests of statistical hypotheses, Philos. Trans. R. Soc. London. Series A 231 (1933), 289-337.   DOI
47 L. Davies and U. Gather, The identification of multiple outliers, J. Am. Stat. Assoc. 88 (1993), no. 423, 782-792.   DOI
48 J. Lopez and M. J. Lopez,Package 'tsoutliers' (2017).
49 R. K. Pearson et al., Generalized hampel filters, EURASIP J. Adv. Signal Proc. 2016 (2016), no. 1, 87:1-18.
50 M. M. Smadi and F. S. Mjalli, Forecasting air temperatures using time series models and neural‐based algorithms, J. Math. Stat. 3 (2007), 44-48.   DOI
51 C. Guestrin et al., Intel lab data, J. Math. Stat. (2016), http://db.lcs.mit.edu/labdata/labdata.html.
52 T. Zhang et al., Bayesian‐optimization‐based peak searching algorithm for clustering in wireless sensor networks, J. Sensor Actuator Netw. 7 (2018), no. 1, 2:1-19.   DOI
53 M. Kemmler et al., One‐class classification with Gaussian processes, Pattern Recogn. 46 (2013), no. 12, 3507-3518.   DOI
54 S. Siripanadorn et al., Anomaly detection using self‐organizing map and wavelets in wireless sensor networks, in Proc. WSEAS Int. Conf. Appl. Comput. Sci., Japan, Oct. 2010, pp. 291-297.