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1  |   INTRODUCTION

Wireless sensor networks have become a promising technology 
that can be used in a variety of applications related to data acqui-
sition and data monitoring. They provide a vast amount of online 
information in the deployment field. However, due to constraints 
on the signal processing and communication capabilities [1‒5] 
of WSNs, some unusual data (called outliers) may result from 
sensor malfunction, process disturbances, human‐related errors, 
and/or a sudden change in the state of the environment [6‒10]. 
The outliers might seriously affect the accuracy of data analysis, 
which leads to model misspecification. Therefore, outlier de-
tection is one of the most important preprocessing steps in any 
data analytical application [11‒14]. This has stimulated many re-
searchers in both temporal and spatial outlier detection [15‒19].

In outlier detection, the Hampel Identifier (HI) is the 
most widely used and efficient outlier identifier [15]. In the 
HI algorithm, the median and the median absolute deviation 
(MAD) of a moving window with a size of (2L + 1) are cal-
culated, where L is the number of observations before and 
after the current observation. The thresholds for outlierness 
evaluation are calculated according to where the generated 
parameter is in the range from 0 to 5. Any observation falling 
outside the range of such thresholds is identified as an out-
lier and is replaced by the median value of the data window. 
However, the HI algorithm still reveals its limitations with 
a highly autocorrelated data process. More precisely, it may 
fail to detect outliers due to the strong autocorrelation [16].

Additionally, in the HI algorithm, the standard devia-
tion estimates are replaced by the MAD from the median. 
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However, this MAD scale estimator can behave badly with 
coarsely quantized data [18].

To the best of our knowledge, most of the existing out-
lier detection methods are still mainly designed for detecting 
outliers in offline data, and there is little research on iden-
tification of outliers in streaming data. This may seriously 
affect the accuracy of real‐time decision‐making. Moreover, 
by detecting outliers in streaming data successfully, the en-
ergy consumption, memory usage as well as the running time 
complexity can be significantly reduced.

In this paper, we exploit the sensor reading over a period 
of time for temporal outlier detection and the readings from 
2‐hop neighbor nodes of the candidate node for spatial out-
lier detection. The contributions of our approaches are two-
fold: (a) modifying the HI algorithm to achieve high accuracy 
identification rate in temporal outlier detection, (b) combin-
ing the GP model and the graph‐based outlier detection tech-
nique to improve the performance of the algorithm in spatial 
outlier detection. It should be noted that our proposed meth-
ods are computationally simple. Therefore, they are suitable 
for applications with energy and computational constraints. 
Our algorithms achieve better performances in terms of ac-
curacy identification rate compared to the HI algorithm and 
some other algorithms.

The remainder of the paper is organized as follows. In 
Section 2, we classify the outlier detection methods and 
briefly summarize some performance indices. In Section 3, 
we define the problem statements and provide a background 
for our network model. Section 4 describes our algorithms. 
The performance metrics of our algorithms are analyzed in 
Section 5. Finally, Section 6 concludes our work and suggests 
some potential directions for future research.

2  |   RELATED WORKS

Outlier detection methods have become one of the primary 
concerns in WSNs. There have been many efforts on im-
proving the efficiency of such methods, which can be cat-
egorized into: (a) parametric (statistical based) methods 
and (b) nonparametric methods [20]. The former [21‒23] 
assumes a stochastic distribution for observations. It labels 
the observations as outliers if there is a significant differ-
ence between the observations and the model assumptions. 
Unfortunately, it may fail to identify outliers in high‐dimen-
sional datasets. Concretely, the complexity and inaccuracy 
of estimation increase gradually with the multidimensional 
distributions of data points [24]. The latter is known as 
a graph‐based outlier detection method, which consists 
of the density‐based method, the distance‐based method, 
and the clustering‐based method [24‒28]. It outperforms 
the former when using the distances among points to de-
tect outliers. It computes either the dimensional distance 

between points [26,29] or the densities of local neighbor-
hoods [25] to detect outliers in a dataset. However, these 
methods may be bounded due to deterioration of the high‐
dimensional data [30]. Therefore, in Ref. [30], the authors 
proposed angle‐based outlier detection (ABOD) for high‐
dimensional data. They further proved that the angles are 
more stable than the distances in high‐dimensional data. 
The main idea of ABOD is a comparison of the angles be-
tween pairs of distance vectors to detect outliers in data-
sets. ABOD has some advantages and disadvantages. The 
advantages of ABOD are that it achieves high performance, 
especially in the case of high‐dimensional data, and that it 
does not require any specific parameter as in the case of 
typical methods. Nevertheless, it still has some limitations 
for using the angle‐based outlier factor (ABOF) to detect 
outliers. The three disadvantages of the ABOD algorithm 
are as follows: (a) owing to the long time complexity (n3), 
where n is the size of a dataset, the ABOD algorithm may 
not suitable for outlier detection in large datasets [31]; (b) 
it achieves a low accuracy identification rate with bound-
ary points [32]; and (c) it does not rely on any parame-
ter, which influences the algorithm performance [33]. To 
overcome the aforementioned drawbacks of outlier detec-
tion methods, we propose new outlier detection methods 
that can detect both temporal outliers and spatial outliers. 
Similar to the research [34,35], the following performance 
indices have been used for evaluating the effectiveness of 
outlier detection methods:

1.	 There are four possible outcomes when detecting outliers 
[35].
a.	Type 1 (Normal points‐NP): The inliers that are identi-

fied as inliers (by the detection method).
b.	Type 2 (False detection points‐FP): The inliers that are 

identified as outliers.
c.	Type 3 (Miss detection points‐MP): The outliers that 

are identified as inliers.
d.	Type 4 (Correct detection points‐CP): The outliers that 

are identified as outliers.
2.	 Let TDR denote the true‐positive rate, which meas-

ures the fraction of outliers that are correctly identified. 
Obviously,

3.	Let FPR denote the false‐positive rate, which measures 
the fraction of inliers that are misidentified as outliers. 
Obviously,

4.	Let IR denotes the identification rate as follows.

TPR=
CP

CP+MP
.

FPR=
FP

FP+NP
.

(1)

(2)
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3  |   PROBLEM STATEMENT AND 
BACKGROUND

Before presenting the network model, we first specify the 
basic assumptions of our WSN model.

3.1  |  Basic assumptions
1.	 We consider a sensor network with N homogeneous 

sensor nodes, which are distributed uniformly in the 
area of interest.

2.	 The sensor nodes are energy constrained and are station-
ary after deployment.

3.	 At the current sensing round kth, each sensor node collects 
(a) sensing data from its 2‐hop neighbor nodes and (b) its 
k previous adjacent sensing values. The received data are 
used for outlier detection at each node before being sent to 
the base station.

4.	 The sensor nodes know in advance the geographic posi-
tion of the network nodes that are used to detect the event 
areas.

5.	 The storage capacity of each sensor node is large enough 
to store k, its adjacent sensed values (from time instant tk 
in the current sensing round kth to the time instant t1 in the 
previous sensing round), and data values at time instant tk 
from its 2‐hop neighbor nodes.

6.	 Two sensor nodes are considered as neighbors if they are 
located inside their radio transmission areas.

3.2  |  Network model

Let yi(t), i = 1, …, N denote the measurement of sensor node 
Si at time t. In [36], yi was assumed the 0–1 binary variable 
for detecting outliers. This attempt may face some drawbacks 
[37], which results in a high rate of false alarm during outlier 
detection. Therefore, in this paper, yi represents the actual 
measurement of the parameter of interest. Each sensor node 
stores k, its previous sensing data (from time instant t1 to time 
instant tk), and the sensed data from 2‐hop neighbor nodes at 
time instant tk. By implementing our proposed algorithms, 
there are three possible outcomes of the reading yi(tk), as 
follows:

1.	 Normal reading (if the difference between yi(tk) and 
yi(tj), (k  −  L  ≤  j  <  k) is not significant).

2.	 Temporal outlier (if the difference between yi(tk) and yi(tj), 
(k − L ≤ j < k) is significant).

3.	 Spatial outlier (if the difference between yi(tk) and 2‐hop 
neighbor nodes values is significant).

All types of outlier nodes are defined below.

Definition 1  A node is called an outlying node at 
time instant (tk) if its measurement value yi(tk) is a tem-
poral outlier and its 2‐hop neighbor nodes values are 
normal readings.

Definition 2  An event area contains m nodes whose 
measurements are temporal outliers and satisfy 
||yi(tk)−�i

||≤�, i=1, … , m, where θ is a predefined 
threshold, and μi is the predicted value.

Definition 3  An outlier area contains m nodes 
whose measurements are spatial outliers and satisfy 
||yi(tk)−𝜇i

||>𝜃.

It is natural to ask how to obtain the optimal value of θ. To 
answer this question, in the following sections, we will show 
how to obtain the best possible performance of our outlier 
detection algorithms with the optimal value of θ.

In order to understand fully the appearance of outliers in 
WSNs, Figure 1 depicts an example of some outlier types. 
Figure 1A illustrates the network structure with N = 20 sen-
sor nodes. These nodes are randomly deployed in the area of 
interest. In Figure 1B, the light blue circles represent the nor-
mal nodes, the green circles represent the event nodes, and the 
black circles indicate the outlying sensor nodes (faulty nodes). 
These figures raise the problems of identifying outliers in real 
time and distinguishing between outlier areas and event areas. 
At time instant tk−2 (Figure 1A), the sensor data are in the nor-
mal range. However, in Figure 1B, there are some changes in 
the network. More precisely, the measurements of sensor nodes 
S2, S5, and S7 indicate that an event occurred in this event area. 
Additionally, the measurements of sensor nodes S4, S6, and S18 
indicate that they are in the outlier area. The working nodes and 
the outlying nodes in the network may change over time. This 
becomes evident when we compare the measurements of nodes 
between time instant tk−1 and time instant tk as shown in Figure 
1B and 1C, respectively.

4  |   THE PROPOSED APPROACH

We apply the modified Hampel Identifier algorithm for clas-
sifying three types of readings, that is, normal reading, event 
reading, and temporal outlier, for each sensor node. Based 
on this classification, we propose a new effective method for 
outlier detection in streaming data. Our proposal not only 
achieves a high identification rate but also distinguishes be-
tween event areas and outlier areas.

IR=
CP

max{FP+CP, MP+CP}
. (3)
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4.1  |  Efficient communication technique in 
data collection

It is well known that one of the limitations of a wireless sen-
sor network is the limited storage capability. Buffer over-
flow may occur at any time if a sensor node receives too 
much data from its neighbor nodes without data aggrega-
tion or data filtering. To tackle this problem, we propose an 
effective communication technique based on data filtering, 
which significantly reduces the number of transmissions. 
Our main idea in presenting an energy efficient communica-
tion technique in WSNs is partially inspired by our previous 
work in [38].

Given N sensor nodes in the field of interest. To initial-
ize the data filtering process, each sensor node broadcasts 
a “HELLO” message to the network using the controlled 
flooding method. This “HELLO” message consists of node 
ID number (Si), location information (li = (latitudei, longi-
tudei)), hop ID number (HOPi), and measurement values 
(yi), (Figure 2). It is worth emphasizing that the hop ID 
number is set to 2 (HOPs = 2) at source node Ss. When a 

F I G U R E  1   Measurements of sensor nodes in the network. (A) Measurements of sensor nodes at time instant tk−2. (B) Measurements of 
sensor nodes at time instant tk−1. (C) Measurements of sensor nodes at time instant tk
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sensor node Sd receives a “HELLO” message, it checks the 
value of the hop ID number. If this number is larger than 0, 
the node Sd decreases this number by one. Then, the node Sd 
forwards this message to its neighbor nodes.

To avoid loop data transmission (a message sent and re-
ceived by the same node), the node must check the node ID 
number in the message before receiving it. The node accepts 
the message if the node ID number in that message is different 
from its node ID number and it comes from one of its 2‐hop 
neighbor nodes. Obviously, the number of transmissions is sig-
nificantly decreased by this technique. As shown in Figure 1A, 
sensor node S13 has received data only from its 2‐hop neighbor 
nodes (i.e., {S10, S11, S14, and S16}). The received data will be 
used for outlier detection before sending it to the base station.

4.2  |  Temporal outlier detection techniques

4.2.1  |  The Hampel Identifier Algorithm
This algorithm identifies the measurement (yi(tk)) of node Si 
as an outlier or inlier based on k previous readings of that 
node. It is assumed that the observations come from iid ran-
dom variables with common distribution 

(
�, �2

)
. The de-

tails of this algorithm are illustrated in the following steps.

•	 Step 1. Choose the width of the moving window 
L,

{
0<L≤

[
(k−1)

2

]}
 from k observations.

•	 Step 2. Compute the median value: 
y0 = τ(y) = median(y[(i − L) : (i + L)]);

•	 Step 3. Estimate the standard deviation for each 
observation:

where H = 1.4826 as given in [39];

•	 Step 4. Identify yi as a temporal outlier if

where 2 ≤ t0 ≤ 5.
One of the advantages of the HI algorithm is its ability to 

detect local outliers in a moving window. Unfortunately, the 
MAD scale estimator in HI is zero if more than half of the 
observations are identical. Furthermore, the authors [16] have 
claimed that if the input is an independent and identically dis-
tributed process, the HI algorithm may fail to detect the out-
liers due to highly autocorrelated data. As a matter of fact, it 
is hard to find the suitable threshold for each process model.

To overcome the aforementioned limitations and to improve 
the robustness in outlier detection, we propose a new algorithm 
based on modifying the HI. The superior performance of this 
method is illustrated in the following sections.

4.2.2  |  The modified Hampel 
Identifier algorithm
For each �, � ∈ , the measurement yi of sensor node Si is an 
outlier inside a dataset y if and only if the rescaled measure-
ment αyi + β is an outlier inside the rescaled dataset αy + β 
[39]. The equivalence equation is given as follows.

Furthermore, the authors in [39] proved that yi is a temporal 
outlier if and only if

where

Based on these analyses, we propose the Temporal Outlier 
Detection (TOD) method using the modified HI as in Algorithm 1.

Similar to that in the HI algorithm, we assume that all 
the observations and historical records of the sensing pro-
cesses can be represented using stationary stochastic models. 

�0 =� (y)=H×median(|y
i−L:i+L

−y0|)

|yi−y0| > t0×𝛤0

||yi−𝜏(y)|| > t0×𝛤 (y)⇔

||𝛼yi+𝛽−𝜏 (𝛼y+𝛽)|| > t0×𝛤 (𝛼y+𝛽) .

||yi−𝜏(y)|| > t0×𝛤 (y),

⎧
⎪
⎨
⎪
⎩

y
i
→�y

i
+�,

� (�y+�)=��(y)+�,

� (�y+�)= ���� (y).

(5)

(6)

(7)

(4)
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Therefore, our proposed TOD algorithm can be used for out-
lier detection in these models.

4.3  |  Spatial outlier detection algorithm

The TOD algorithm identifies the temporal outliers with a 
high accuracy identification rate. However, it may miss some 
true spatial outliers. Furthermore, the spatial data are critical 
for classifying the event areas and outlier areas. Therefore, 
in this section, we propose a new spatial outlier detection 
method, which detects the outlying nodes and outlier areas 
inside a spatial dataset with a high identification rate and 
within a short execution time.

4.3.1  |  Basic idea of spatial outlier detection
As mentioned in the previous sections, there may not be 
sufficient information to identify the spatial outliers if we 
use only the distances between points and the angles be-
tween pairs of distance vectors. In this section, we com-
bine the advantages of the angle‐based method and the 
distance‐based method to propose a new spatial outlier de-
tection method. The main idea of this method is illustrated 
in Figure 3.

We take an example of a WSN with five sensor nodes, 
which are randomly deployed in the sensing field. Figure 3A 
shows that the measurement of node S1 is an outlier because 
the distances between S1 and its 2‐hop neighbor nodes {
S2, S3, S4, S5

}
 are long. Additionally, vectors {

�������⃗S1S3, �������⃗S1S4, �������⃗S1S5

}
 lie on the same side of the plane with vec-

tor �������⃗S1S2. In contrast, Figure 3B shows that the measurement 
of node S1 is an inlier because the distances between this 
node and its neighbor nodes are short. Additionally, vectors {
�������⃗S1S4, �������⃗S1S5

}
 lie on the opposite side of the plane with vector 

�������⃗S1S2. Based on these observations, we state the following 
remarks.

Remark 1  Consider a WSN in a three‐dimensional 
space, where the horizontal and vertical axes represent 
the latitude and longitude of the nodes, respectively. 
The third dimension represents the measurement of the 

nodes. The measurement of a node is an outlier at a 
time instant if the distances between this node to all its 
2‐hop neighbor nodes are long. In addition, the vectors 
from this node to its 2‐hop neighbor nodes lie on the 
same side of the plane.

4.3.2  |  Direction‐based Spatial Outlier 
Detection (SOD)
We present a direction‐based outlier detection technique in 
our spatial outlier detection algorithm. To facilitate our pro-
posed SOD algorithm, we first introduce the following theo-
rem, which constructs the SOD algorithm.

Theorem 1  Let Si(lai, loi, yi), (i = 1:N) denote the in-
formation (including the latitude, longitude, and mea-
surement) of node Si. Let Sj(laj, loj, yj), Sk(lak, lok, yk), 
{j, k=1 : N, i≠ j≠k} denote the information of two 
nodes Sj, Sk among the 2‐hop neighbor nodes of node Si. 
The vectors {������⃗SiSj,

������⃗SiSk} lie on the opposite sides of a 
plane if and only if:

Proof   From three points Si(lai, loi, yi), Sj(laj, loj, yj), 
and Sk(lak, lok, yk), {i, j, k=1:N, i≠ j≠ k}, we always 
have two different vectors:

In Ref. [40], the dot product of two vectors 
{
�����⃗SiSj,

������⃗SiSk

}
 

satisfies the following equations:

and

From (9) and (10), we have

 or

(
laj− lai

) (
lak − lai

)
+
(
loj− loi

) (
lok − loi

)

+
(
yj−yi

) (
yk −yi

)
<0.

�����⃗SiSj =
((

laj− lai

)
,
(
loj− loi

)
,
(
yj−yi

))
and

������⃗SiSk =
((

lak − lai

)
,
(
lok − loi

)
,
(
yk −yi

))
.

�����⃗SiSj.
������⃗SiSk =

(
laj− lai

) (
lak − lai

)

+
(
loj− loi

) (
lok − loi

)

+
(
yj−yi)(yk −yi

)

�����⃗SiSj.
������⃗SiSk =∥SiSj ∥∥SiSk ∥ cos

⟨
������⃗SiSj,

������⃗SiSk

⟩
.

(11)∥SiSj ∥∥SiSk ∥ cos

⟨
������⃗SiSj,

������⃗SiSk

⟩
<0

(12)cos

⟨
������⃗SiSj,

������⃗SiSk

⟩
<0

F I G U R E  3   Intuition of (distance, direction)‐based outlier 
detection. (A) Measurement of S1 is an outlier. (B) Measurement of S1 
is an inlier
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or

It means that the two vectors 
{
�����⃗SiSj,

������⃗SiSk

}
 lie on the opposite 

sides of a plane.� ■ 

4.3.3  |  Gaussian process
We propose a Gaussian process‐based method to predict the 
unobserved variables in the collected dataset. Hence, we use 
a stationary Gaussian Process (GP) to model the measure-
ment of sensor nodes. Then, this information is utilized to 
estimate the measurement uncertainty at different locations 
of the sensor nodes. These predicted values are used for spa-
tial outlier detection.

Let s=
(
s1, s2, … , sN

)
 denotes the location of N nodes, 

where si =
(
latitudei, longitudei

)
. Let yi denotes the measure-

ment of sensor node Si. Since sensor node Si has (M − 1) 2‐hop 
neighbor nodes, where 1 < M ≤ N, we take into account M 
nodes only. Hence, we have to look for a mapping from input 
space s=

[
s1, s2, … , sM

]
 to output space y=

[
y1, y2, … , yM

]
. 

The spatial correlation function between si and yi is given in 
[41]. In that research, the signal strength at node Sp, which is 
received from node Sq, is calculated as follows:

where Pr is the power of the received signal, P0 is a reference 
power at a reference distance d0, dpq is the distance between Sp 
and Sq, η is the path loss index, and Xσ is a zero‐mean Gaussian 
random variable with standard deviation σ.

Let f(s) denotes the function modeled by the GP, which is 
given as follows:

where m(s)=E
[
f (s)

]
 is the mean function of the distribution 

at s, and k(sp, sq) is the kernel function of the covariance func-
tion, sp,  sq  ∊  s (refer [42] for more details). The graphical 
model of the GP for regression is given in Figure 4.

We assume that the covariance function is a squared expo-
nential (SE), and it can be written as follows.

where dpq =∥ sp−sq ∥ is the Euclidean distance between sp and 
sq, and the two hyperparameters σ0 and λ are the amplitude and 
length scale, respectively.

For convenience, let s1:M refers to the set of M data points. 
Suppose that a set of localizations s1:M has its correspond-
ing approximate measurements 

{
f (s1), f (s2), … , f (sM)

}
,  

which are denoted as f1:M. It turns out that each f(si) corre-
sponds to a data point si with probability p(si). Therefore, 
the training data for the GP are defined as follows: 
C1:M =

{(
s1, f (s1)

)
,
(
s2, f (s2)

)
, … ,

(
sM , f (sM)

)}
. We as-

sume that C1:M follows the GP model whose initial mean 
function is zero and the covariance function is given by the 
kernel function as follows:

After training the GP with C1:M, the new measurement of 
node SM+1 will be predicted by the GP model. The set of pre-
dicted data (sM+1, f(sM+1)) is calculated using the GP proper-
ties as follows:

where k=
[
k(sM+1, s1), k(sM+1, s2), … , k(sM+1, sM)

]
. By ap-

plying Bayes’ theorem, we can calculate the approximate 
probability of the predicted measurement value fM+1 from 
location sM+1 as follows:

where

4.3.4  |  Lack of information in GP training
As described above, each sensor node has only measure-
ments from (M − 1) in its 2‐hop neighbor sensor nodes. In 

(13)𝜋

2
<

⟨
������⃗SiSj,

������⃗SiSk

⟩
<

3𝜋

2
.

ypq =Pr −P0−10� log10

(
dpq

d0

)
+X�

f (s)∼GP
(
m(s), k(sp, sq)

)
,

k(dpq)=�2
0

exp

(
−

d2
pq

2�2

)

K =

⎡
⎢
⎢
⎢⎣

k(s1, s1) … k(s1, sM)

⋮ ⋱ ⋮

k(sM , s1) ⋯ k(sM , sM)

⎤
⎥
⎥
⎥⎦

.

[
f1:M

fM+1

]
=

([
m(s1:M)

m(sM+1)

]
,

[
K k

kT k(sM+1, sM+1)

])

P
(
fM+1|C1:M , sM+1

)
=

(
�M(sM+1), �2

M
(sM+1)

)

{
�M(sM+1)= kK−1f1:M ,

�2
M

(sM+1)= k(sM+1, sM+1)−kK−1kT .

F I G U R E  4   Graphical model of the GP for regression. Squares 
represent observed variables and circles represent unknowns [42]
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some cases, this may not provide sufficient information for 
the GP training process. To tackle this problem, each sensor 
node should estimate some new data points within its sensing 
area. We call such nodes, which lack information, as candi-
date nodes Sc. The estimation process is implemented using 
the two following steps.

•	 Step 1. Sc finds a source node Ss among its 2‐hop 
neighbor nodes. The location of Ss is determined using 
ss = argmaxsi∈s1:M−1

f (si) .
•	 Step 2. Based on the received signal strength in (14), Sc 

estimates V more measurements within its sensing area. 
The measurements of these V locations se, {e = 1 : V} are 
calculated as follows:

�where des =∥ se−ss ∥ is the Euclidean distance between Se 
and Ss.

4.3.5  |  Spatial outlier detection
As presented in [43‒45], the authors applied the value of 
the posterior mean μM in the GP to predict the anomaly. 
After training the GP, a measurement yM+1 is an outlier 
in the given dataset if its posterior mean is larger than the 
mean of the other measurements; otherwise, it is an in-
lier. Furthermore, the posterior variance of the anomaly 
σ2(sM+1) is higher than that of the variance of the normal. 
The question is how much deviation of μM and yM+1 is suit-
able for identifying an outlier. To answer this question, 
we use the Neyman‐Pearson hypothesis [46] to find the 
optimal value of θ.

Based on the aforementioned analyses, we propose a new 
outlier detection algorithm using the GP. The procedure for the 
SOD algorithm is as follows.

5  |   PERFORMANCE EVALUATION

To evaluate the performance of our algorithms, we conducted 
experiments on both synthetic and real‐world datasets. The 
comparison among algorithms TOD, SOD, HI, and ABOD 
was made by (a) analyzing the results when using these 

f(se) =Pr −P0−10� log10

(
des

d0

)
+X�

�opt:=min
�

{
P
(
|yi(tk)−�i|≥�

)}
.

T A B L E  1   The observed data in Ref. [47]

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

22.6 28.8 26.8 81.5 19.1 15.2 24.1 23.6 9.1 79.5

y11 y12 y13 y14 y15 y16 y17 y18 y19 y20

18.6 78.8 23.1 11.9 20.1 20.3 17.3 25.8 14.1 26.5

(21)

(22)
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algorithms to detect outliers in the dataset, (b) testing the 
generated dataset, and (c) testing a real‐world dataset.

5.1  |  Numerical analysis on the observed 
data in Ref. [47]
Let us consider the observed data in [47]. In that study, the 
authors have identified three outliers (81.5, 79.5, and 78.8) 
among the observations. This result is used for comparison 
with the outcomes of the HI algorithm and TOD algorithm 
(Table 1).

Firstly, we detect the outliers in the observed data by 
using HI with window width L = 5 and t0 = 3. All the pa-
rameters in the HI algorithm are given in Table 2. As we 
can see, the Hampel Identifier detects only two outliers, 
that is, y4, and y12, in the observed data, while y10 is de-
tected as an inlier.

As mentioned above, due to “a symmetric view on dis-
persion,” and a highly autocorrelated dataset, HI may fail to 
identify the outliers. Therefore, y10 is identified as an inlier. 
The reason is that two outliers (i.e., y10, y12) occur in a short 
time. More concretely, at y10, we have |y10 − y0| = 55.9 and 
t0 × S0 = 64.49. Obviously, |y10 − y0| < t0 × S0. Hence, y10 is 
identified as an inlier while it is actually an outlier.

In order to compare the accuracy of detecting outliers be-
tween the HI algorithm and the TOD algorithm, we apply 
the TOD algorithm with (�=1.2,�=0.8). Using these setting 
parameters, the TOD algorithm identifies all three outliers 
correctly. Table 3 shows the results of our algorithm.

5.2  |  Numerical analysis on detecting 
outliers in the monthly series of the Italian 
Industrial Production Index from 1981 to 1996
In this section, we apply the HI algorithm and TOD al-
gorithm to detect the outliers in the monthly series of 
the Italian Industrial Production Index from 1981 to 
1996, which is available in the tsoutlier R package [48]. 
Table 4 shows the investigated data series, which has 
been analyzed by many authors [49,50]. Therefore, it is 
really useful for comparing the HI algorithm and TOD 
algorithm. In the HI algorithm, we set L = 5, t0 = 3. In 
the TOD algorithm, we set (�=1.0,�=1.0). The results 
are given in Table 4. The results demonstrate that our 
proposed TOD algorithm detects 16 of 18 outliers cor-
rectly. However, for the HI algorithm, 18 of 34 detected 
outliers are FP.

T A B L E  2   Outlier detection by HI

Data process y0 |yi − y0| t0 × Γ0 Outlier

y1 22.6 ‐ ‐ ‐ N/Aa

y2 28.8 ‐ ‐ ‐ N/A

y3 26.8 26.8 0 18.68 No

y4 81.5 26.8 54.7 34.25 Yes

y5 19.1 24.1 5.0 12.01 No

y6 15.2 23.6 8.4 14.23 No

y7 24.1 19.1 5.0 20.02 No

y8 23.6 23.6 0 37.36 No

y9 9.10 23.6 14.5 22.24 No

y10 79.5 23.6 55.9 64.49 No

y11 18.6 23.1 4.5 62.27 No

y12 78.8 23.1 55.7 49.82 Yes

y13 23.1 20.1 3.0 13.34 No

y14 11.9 20.3 8.4 12.45 No

y15 20.1 20.1 0 12.45 No

y16 20.3 20.1 0.2 12.45 No

y17 17.3 20.1 2.8 12.45 No

y18 25.8 20.3 5.5 23.13 No

y19 14.1 ‐ ‐ ‐ N/A

y20 26.5 ‐ ‐ ‐ N/A
aN/A: Not available. 
All the bold values are predefined as outliers, and otherwise (normal values) are 
inliers.

T A B L E  3   Outlier detection by TOD

Data process y0 |yi − y0| t0 × Γ0 Outlier

y1 22.6 ‐ ‐ ‐ N/Aa

y2 28.8 ‐ ‐ ‐ N/A

y3 26.8 32.96 0 18.72 No

y4 81.5 32.96 65.64 34.33 Yes

y5 19.1 29.72 6.00 22.29 No

y6 15.2 29.12 10.08 20.06 No

y7 24.1 23.72 6.00 20.06 No

y8 23.6 29.12 0 37.45 No

y9 9.10 29.12 17.40 22.29 No

y10 79.5 29.12 67.08 64.64 Yes

y11 18.6 28.52 5.40 62.42 No

y12 78.8 28.52 66.84 49.93 Yes

y13 23.1 24.92 3.60 13.37 No

y14 11.9 25.16 10.08 12.48 No

y15 20.1 24.92 0 12.48 No

y16 20.3 24.92 0.24 12.48 No

y17 17.3 24.92 3.36 12.48 No

y18 25.8 25.16 6.60 24.52 No

y19 14.1 ‐ ‐ ‐ N/A

y20 26.5 ‐ ‐ ‐ N/A
aN/A: Not available. 
All the bold values are predefined as outliers, and otherwise (normal values) are 
inliers.
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5.3  |  Numerical analysis on detecting 
spatial outliers
In this section, the performance of the SOD algorithm is 
analyzed and compared with some typical methods in spa-
tial outlier detection. We briefly summarize a typical method 
of spatial outlier detection, which will serve as a reference 
for evaluating the performance of our proposed SOD algo-
rithm. In this paper, each sensor node Si is treated as a point in 
three‐dimensional space, that is, Si(latitude, longitude, meas-
urement). We use the pairs of points between the candidate 
node and its 2‐hop neighbor nodes to construct vectors. The 
angle‐based outlier factor (ABOF) is the variance over the 
angles between these vectors.

5.3.1  |  How to use GP in spatial 
outlier detection
In this section, we use GP to detect outliers in the network 
shown in Figure 1. At the time instant tk, the measurement of 
the candidate node S13(6.8, 3.2) is y13 = 0, while the received 
data from its 2‐hop neighbor nodes are y10 = 32; y11 = 27; 
y14 = 31; y16 = 30. Therefore, we have four measurements 
y = [32, 27, 31, 30] of these nodes with the corresponding 
locations s=

{
S10(8, 1.2), S11(4, 2), S14(6.2, 3.6), S16(6, 1)

}
. 

Now, we train the GP with two input vectors slati-

tude  =  [8,  4,  6.2,  6], slongitude  =  [1.2,  2,  3.6,  1] and an out-
put vector y  =  [32,  27,  31,  30]. After training, we use the 
latitude input vector and longitude input vector to estimate 

the measurements of the candidate nodes, μlatitude(s13) and 
μlongitude(s13), respectively. The final estimated measurement 
of candidate node is the mean of μlattitude(s13) and μlongtitude(s13) 
�(s13)=0.5

(
�latitude(s13)+�longitude(s13)

)
.

We start with the latitude input vector slati-

tude = [8, 4, 6.2, 6], and the output vector y = [32, 27, 31, 30]. 
We choose σ0 = 0.3 as in (16), and then calculate a covariance 
matrix using (17):

We get k= [1.684 1.660 1.688 1.687] and 
k(s13, s13) = 1.69. From (20), we have

Now, we consider the longitude input vector slati-

tude = [1.2, 2, 3.6, 1], and the output vector y = [32, 27, 31, 30]. 
We have

K =

⎡
⎢
⎢
⎢
⎢⎣

1.690 1.631 1.677 1.675

1.631 1.690 1.671 1.675

1.677 1.671 1.690 1.689

1.675 1.675 1.698 1.690

⎤
⎥
⎥
⎥
⎥⎦

.

{
�latitude(s13)=31.328,

�2
latitude

(s13)=3.73×10−4.

{
�longitude(s13)=31.467,

�2
longitude

(s13)=3.73×10−4.

T A B L E  4   Outlier detection in the Italian industrial production index 1981 to 1996

Time Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec

1981 86.3 87.6 96.3 90.4 90.4 94.4a 95.2 36.6a,b 96.1 95.6 92.8 77.3

1982 85.1 86.8 96.9 90.5 88.5 87.9 90.2 36.9a,b 92.3 88.0 86.8 77.1

1983 80.7 82.3 92.6 79.5 87.0 86.7a 84.8a 38.4a,b 90.8 87.7 89.5 74.6a,b

1984 85.4 85.3 92.6 78.9 93.3 90.0 88.6 43.0a,b 89.3 97.5a 89.7 73.7a

1985 84.1 87.3 92.7 84.5 93.9 88.4 93.9 39.1a,b 91.4 96.5 89.7 77.0

1986 86.2 88.9 92.6 93.6 92.4 91.8 99.0a 37.5a,b 97.9 101.0 91.3 83.3

1987 82.9 90.9 102.2 95.3 96.0 100.5a 100.5a 39.3a,b 100.3 103.0 99.1 86.5

1988 89.4 99.8 109.5 94.2 104.2 106.1 100.8 46.9a,b 107.2 104.3 106.3 93.3

1989 98.3 101.4 109.0 97.5 107.5 110.3 104.2a 50.3a,b 108.1 112.2 109.5 89.8

1990 101.2 101.8 112.6 98.1 110.3 105.8 109.0 51.1a,b 103.6 113.8a 104.6 88.2a,b

1991 102.9 99.6 105.9 97.6 108.6 103.1 110.9 46.3a,b 106.9 112.8a 105.3 89.1

1992 98.1 102.8 111.5a 102.4 103.1a 109.7 111.1 43.4a,b 104.1 107.1 105.4 87.8

1993 89.3 98.7 111.3 98.5 102.4 105.7 103.9 45.0a,b 104.5 101.9 104.1 92.9

1994 90.2 99.4 113.3a 97.9a 110.6 112.4 108.8a 52.6a,b 112.9a 109.2 111.7 99.3

1995 102.8 107.6 123.6 98.9 117.5 117.7 113.4 58.5a,b 114.1 117.8 115.5 96.6

1996 106.1 111.3 115.6 103.5 115.3 110.1 118.1a 52.0a,b 110.7 118.2 108.1 93.6
aOutlier detected by HI. 
bOutlier detected by TOD. 
All the bold values are predefined as outliers, and otherwise (normal values) are inliers.

(23)

(24)
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From (23) and (24), we have μ(s13) = 31.397, which satisfies 
equation ||yM+1−�(sM+1)||≥�. We conclude that it is a spatial 
outlier at the time instant tk.

5.3.2  |  Numerical analysis on synthetic data
We apply our SOD algorithm and ABOD algorithm to test 
the generated datasets, in which some outliers are added 
using the exponential distribution. More precisely, we con-
sider a WSN with N = 100 sensor nodes, which are randomly 
deployed in the sensing field in the area 100 × 100 (m2).

In the training phase, at each sensor node Si, i = 1 : N, we 
generate a random time series data with a size of k = 1,000 
using an autoregressive AR(Z = 3) as in the following model:

where the autoregressive coefficients are set as an an-
nual mean minimum temperature model in Ref. [51]: 
a1 = 0.4457; a2 = 0.1662; a3 = 0.2266 and υk is iid subject 
to  (0, 1). The observation is ŷi,k = yi,k +�k, where χk is an 
added outlier.

In the testing phase, we apply outlier detection algorithms 
to test the dataset. We generate T outliers and add them ran-
domly into the dataset, which is distributed exponentially 
with parameter λ = 1. The comparison of the identification 
rate between our SOD algorithm and the ABOD is given in 
Table 5. The portion of outliers is the proportion of the num-
ber of predefined outliers over the size of the dataset. The 
simulation results demonstrate that the identification rate of 
all the algorithms will be decreased corresponding to the in-
crease in the number of predefined outliers or the portion of 
outliers. However, with higher values of CP, the SOD algo-
rithm has higher identification rates compared to the ABOD 
algorithm.

As expected, 76% of the outliers are identified correctly 
by our algorithm, while the HI algorithm identified 72%, as 
shown in Table 5. With a high IR value, the SOD algorithm 
can correctly detect the outliers in time‐series data, which 
is useful for real‐time decision‐making.

5.3.3  |  Numerical analysis on real data
We investigated the effectiveness of our algorithm by apply-
ing it to a real dataset from Intel Berkeley Research lab be-
tween February 28 and April 5, 2004 [52]. The sensor nodes 
were arranged in a field according to the diagram shown in 
Figure 5. As depicted in Figure 5, the coordinates of the sen-
sor nodes are given relative to the upper right corner of the 
lab. For a period of 31 seconds, each Mica2Dot sensor node 

recorded the temperature, humidity, light, and voltage values. 
Thus, over 2.2 million readings were collected by these sen-
sor nodes. However, we only focus on detecting outliers in 
the dataset generated on March 6, 2004 for the temperature 
and humidity values by sensor nodes S1, S2, S3, S33, S34, S35, 
and S37. We call them the IBRL dataset. The simulation re-
sults are shown in Figures 6 and 7.

Table 6 presents some events in the network. The source 
of an event is the node that has the longest distance between 
its measurements and the measurements of its neighbor nodes 
in an event area.

It should be noted that sensor node S37 is located in the 
kitchen, where we expect a higher temperature and a lower 
humidity. However, the temperature captured from 08:54:20 
to 14:14:05 on March 6, 2004 by sensor node S34 is higher 
than the sensing data of any of its neighbor nodes S1, S2, S3, 
S33, S34, S35, and S37. Therefore, sensor node S34 becomes the 

yi,k =

Z∑

j=1

ajyi,k−j+�k,

Outlier

T

Angle‐based approach SOD algorithm

% OD CP IR OD CP IR

5 50 58 42 0.72 53 47 0.89

5 100 105 92 0.88 112 96 0.86

10 100 120 93 0.78 110 91 0.83

10 200 225 185 0.82 210 179 0.85

15 150 170 124 0.73 160 131 0.82

15 300 361 265 0.73 332 262 0.79

20 200 246 190 0.77 229 185 0.81

20 400 487 342 0.70 452 324 0.72

50 500 592 450 0.76 565 429 0.76

50 1,000 1,246 876 0.70 1,245 865 0.69

75 750 815 552 0.68 851 534 0.63

75 1,500 1,824 1,124 0.62 1,719 1,210 0.70

100 1,000 1,342 762 0.57 1,321 861 0.65

100 2,000 2,671 1,586 0.59 2,408 1,517 0.63

Average 733     0.72     0.76

TABLE 5  Comparison of the identification rate in outlier detection

F I G U R E  5   The sensor deployment in the Intel Berkeley 
Research Lab [52]

(25)
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source of a temperature event during this time. From Figures 
6A and 7A, it can be seen that a large number of outliers are 
detected by the HI algorithm, and these outlier points occur 
over time. It means that the HI algorithm identifies only un-
usual changes in the time series. This technique ignores the 
locations of the nodes, from where the sensing data are col-
lected. As a result, the HI algorithm fails to detect some event 
areas that occur in the network. Furthermore, as mentioned 
above, the HI algorithm may encounter some limitations 
while working with highly autocorrelated data processes. 
Therefore, most of these outliers detected by the HI algorithm 
are false detection points. This is the main reason behind the 
low accuracy identification rate of the HI algorithm. To over-
come this limitation, the ABOD algorithm and our proposed 

SOD algorithm consider the location of the generated data. 
As a result, these algorithms achieve better performance 
than the HI algorithm. The results are depicted in Figures 
6B, 6C and 7B, 7C. Obviously, in the ABOD algorithm and 
SOD algorithm, the outliers appear when the measurements 
change among its neighbor nodes. Moreover, by combining 
the advantages of the angle‐based method and the distance‐
based method, our proposed SOD algorithm overcomes the 
limitations of these algorithms (i.e., being bounded in high‐
dimensional data, or a dataset having both dense and sparse 
dimensions). Hence, as can be seen in Figures 6C and 7C, the 
number of CP points in our algorithm is higher than that in the 
other two algorithms, and the SOD algorithm can work well 
with high‐dimensional data. However, there are still some 

F I G U R E  6   Outlier detection in temperature values (A) Outlier 
detection by HI (B) Outlier detection by ABOD (C) Outlier detection 
by SOD
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F I G U R E  7   Outlier detection in humidity values (A) Outlier 
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MP points in both ABOD and SOD algorithms. In this case, 
we should use both TOD and SOD algorithms to improve the 
accuracy identification rate. These simulation results indicate 
the robustness of the methods in the presence of spatial data. 
The temporal outlier detection methods can similarly be used 
in many applications that require identification of outliers in 
the data across time (e.g., abrupt changes in the stock market, 
anomalies in customer transactions, and network violations). 
These methods are very useful for detecting early anomalies 
in streaming data. Unfortunately, the temporal outlier detec-
tion methods do not take spatial sequences into account, and 
therefore, they cannot identify pattern changes over space. In 
contrast, the spatial outlier detection methods detect anom-
alies in the data of sensor nodes, whose values are signifi-
cantly different from those of its spatial neighbor nodes. 
These methods are widely used in localization and tracking 
applications. However, the temporal behaviors are not cap-
tured in spatial outlier detection methods. Moreover, the ac-
curacy identification rate of spatial outlier detection methods 
is sensitive to environmental noises. Therefore, we should 
choose the best suitable method depending on the specific 
data type and the requirements of the applications.

5.3.4  |  Evaluation through ROC analysis
This section describes the use of the receiver operating char-
acteristic (ROC) [34] analysis to evaluate the performance of 
the algorithms. In this analysis, the performance metric is the 
area under the ROC curve (AUC). Therefore, the larger the 
AUC is, the more accurate the method is. We evaluated our 
proposed SOD algorithm on the IBRL dataset. While using 
the IBRL dataset, we found that the original data files did not 
provide any information about outliers. Therefore, similar to 
the research by [53,54], we generated a “labeled dataset” from 
the IBRL dataset by the two following steps: (a) use the SOD 
algorithm to detect all outliers and then replace them by their 
estimated values (normal values), (b) generate some outliers, 
whose values fall outside the normal data range and then in-
ject them into the dataset in a uniform distribution. It should 
be noted that the labeled dataset in this case is defined as a 
dataset in which some labels have been tagged (e.g., the size, 
values, and positions of outliers). The size of the dataset is 
fixed, and we vary the number of outliers from 5% to 90% of 
the total data points. We again compare the outcome of our 
algorithm with that of the ABOD algorithm for ranking the 
accuracy identification rate. The simulation results are given 
in Table 7. It can be seen that the AUC of the SOD algorithm 
is quite similar to that of the ABOD algorithm. The best values 
of AUC obtained by the algorithms vary from 0.862 to 0.957. 
It also illustrates that the AUC of the algorithms increases with 
the outlier ratios. This means that with higher number of outli-
ers in the dataset, the number of CP points is likely to increase.

6  |   CONCLUSIONS

We have introduced a new threshold‐based real‐time outlier 
detection algorithm. The threshold parameter was optimized 
according to the Neyman‐Pearson lemma. The new method 
achieves real‐time outlier detection because of its algorith-
mic simplicity. We performed extensive numerical analyses, 
which proved that the proposed method provides better sta-
tistical results for outlier detection than the typical method 
(HI algorithm). Our algorithms are suitable for online out-
lier detection in any applications that require accurate analy-
sis and real‐time decision‐making. Our algorithms achieve 
high performance with a low‐energy consumption and small 
storage requirement. In our future work, we are planning to 
conduct more research on the early detection of anomalies in 
healthcare monitoring applications.
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T A B L E  6   Event areas in the network

Event area
Source 
of event

Occurring time 
(time in second)

From To

1. Temperature events

{S33, S34, S35, S37} S34 08:54:20 09:56:20

{S34, S35, S37} S34 10:07:37 14:14:05

{S1, S2, S3, } S1 08:22:07 09:12:00

{S1, S33} S33 09:47:27 14:14:06

{S2, S33} S33 09:45:24 11:42:20

{S1, S3} S3 14:45:47 15:09:07

2. Humidity events

{S1, S2, S3, S33, S34, S35, S37} S34 07:49:16 09:22:36

{S1, S2, S3, S33, S35, S37} S33 09:22:37 11:27:25

{S1, S3, S33, S35, S37} S33 11:27:26 16:35:45

T A B L E  7   AUC scores of ABOD and SOD algorithms on IBRL 
dataset

Outlier ratio (%) ABOD SOD

5 0.873 ± 0.0128 0.862 ± 0.0235

25 0.915 ± 0.0261 0.918 ± 0.0156

50 0.926 ± 0.0048 0.930 ± 0.0076

75 0.958 ± 0.0170 0.942 ± 0.0217

90 0.957 ± 0.0239 0.951 ± 0.0173
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