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Data races are one of the most difficult types of bugs in 
concurrent multithreaded systems. It requires significant 
time and cost to accurately detect bugs in complex large-
scale programs. Although many race detection techniques 
have been proposed by various researchers, none of them 
are effective in all aspects. In this paper, we compare   
the performance of five recent dynamic race detection 
techniques: FastTrack, Acculock, Multilock-HB, 
SimpleLock+, and causally precedes (CP) detection. We 
experimentally demonstrate the strengths and weaknesses 
of these dynamic race detection techniques in terms of 
their detection capability, running time, and runtime 
overhead using 20 benchmark programs with different 
characteristics. The comparison results show that the 
detection capability of CP detection does not differ from 
that of FastTrack, and that SimpleLock+ generates the 
lowest overhead among the hybrid detection techniques 
(Acculock, SimpleLock+, and Multilock-HB) for all 
benchmark programs. SimpleLock+ is 1.2 times slower 
than FastTrack on average, but misses one true data race 
reported from Mutilock-HB on the large-scale benchmark 
programs. 
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I. Introduction 

Multithreading is an essential programming technique 
commonly used in fields ranging from operating systems to 
mobile-multimedia applications for the purpose of improving 
the performance or responsiveness of a particular program. 
However, writing a correctly executing multithreaded program 
is far more difficult than writing a correctly executing 
sequential program owing to the nondeterminism in concurrent 
thread executions. Nondeterministic thread interleaving may 
produce nondeterministic outputs for the same input when   
the threads are not properly synchronized. When this 
nondeterministic thread behavior causes a system failure or 
incorrect results, it is referred to as a concurrency bug. Owing 
to the difficulty of detection, concurrency bugs may be 
unintentionally left in a program after release, which can have 
disastrous results [1], [2]. 

A data race is one type of concurrency bug that occurs when 
two different threads access the same memory location without 
an ordering constraint enforced between the accesses, where at 
least one access is a write access [3]. Because a data race can 
easily occur and is very common, a large number of studies 
[4]–[18] on dynamic detection techniques have been conducted 
to accurately detect as many as data races as possible by 
analyzing the execution trace of a program. Among the 
previous techniques, several [4], [5], [17] proposed 
fundamental algorithms for developing precise or high-
coverage dynamic race detection techniques.  

Based on these basic algorithms, some [6]–[16] proposed 
various techniques to increase the performance of the previous 
techniques. All of these dynamic detection techniques verified 
their superiority by showing the running time, runtime 
overheads, detection capability, and accuracy (ratio of false 
positives), which are the important factors for the practical use 
of a race detector. A low runtime slowdown frequently leads 
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developers to use race detectors during the development phase 
of a concurrent program, which can increase the reliability of 
the program by rapidly removing problematic concurrency 
bugs. With the detection speed, the detection capability and 
accuracy should be considered to develop and select a race 
detection tool because a high detection capability implies a 
small number of repeated executions of a program for 
detection, and a high accuracy implies a low laborious effort to 
filter false warnings. 

In this paper, we analyzed the performance of state-of-the-art 
and current dynamic techniques in terms of detection speed, 
capability, and accuracy on the same platform for a fair 
comparison. We collected the performance data on these 
techniques through extensive experiments using the same 
benchmark programs and configurations. Our work makes the 
following specific contributions: 
• We select five pure dynamic data race detection techniques: 

FastTrack, Acculock, Multilock-HB, SimpleLock+, and 
Causally precedes (CP) detection. We evaluate their 
performance on the same platform with the same input. 

• We compare the running time, runtime overhead, detection 
capability, and accuracy of all five detection techniques 
using 12 small programs containing various data races, and 
the most-used eight large-scale programs categorized into 
three groups with different numbers of access and 
synchronization events. 

• Our experiments show that Multilock-HB and CP-detection 
can accurately and precisely detect actually occurred and 
potential data races. However, both methods require 
significant processing time. In addition, we showed that 
SimpleLock+ has almost the same detection capability and 
accuracy as Multilock-HB, and generates a detection speed 
similar to that of FastTrack. 
The rest of this paper is organized as follows. Section II 

discusses previous studies in this area. In Section IV, we briefly 
review the dynamic data race detection techniques compared in 
this paper. In Section III, an analysis of these techniques based 
on the experimental results is presented. In Section V, we 
provide some concluding remarks regarding this research. 

II. Related Work 

There have been a number of studies on increasing the 
detection speed and capability of dynamic data race detection 
techniques with high accuracy, especially for Java programs. 
Here, we discuss the relevant research along two main axes: 
dynamic analysis and static analysis. For dynamic analysis 
techniques, we additionally describe their performance 
evaluation methods. 

Dynamic analysis: Djit+ [4] was the first vector clock (VC)-

based HB detector. To complement the high detection 
overhead of Djit+, sampling techniques and a combination of 
Djit+ and a Lockset algorithm [5] such as LiteRace [6], 
RaceTrack [7], or MultiRace [8] have been proposed. Although 
these complementary techniques reduced the detection speed 
and memory requirement, Djit+ provided the highest precision 
before the appearance of FastTrack. 

FastTrack is the fastest race detection algorithm that reduces 
the overhead of the VC operations of Djit+ without sacrificing 
accuracy using an epoch-based representation. FastTrack 
showed its effectiveness by comparing the memory overhead 
and runtime slowdown of Djit+ using 16 benchmark programs 
including small-sized (86–111k lines of code (LOC)) programs 
collected from the SPEC JVM98 [19] and the parallel Java 
Grand benchmark suite [20]. After FastTrack was proposed, 
sampling techniques such as Pacer [10] CARISMA [11], and a 
dynamic granularity algorithm [12] were suggested to improve 
its detection speed by minimizing the number of missing data 
races. The detection capability, runtime overhead, and memory 
usage of CARISMA was compared with those of FastTrack on 
the same RoadRunner framework [21] using the subset of 
SPEC JVM 98 and Dacapo benchmarks [22]. Pacer was 
implemented on the Jikes RVM and compared the detection 
capability and runtime overhead to LiteRace using the DaCapo 
benchmark suite and SPEC JBB2000. 

A shortcoming of the HB detection technique is that it cannot 
detect hidden data races that are detectable in other thread 
interleaving sequences. To report hidden races as well as 
actually occurred data races, hybrid detection was introduced. 
This [13] is the first hybrid detection method that combines 
HB-relation and Lockset-based detection algorithms. Acculock 
and Multilock-HB [15] are epoch-based hybrid detectors based 
on Hybrid. Acculock provides a fast detection speed 
comparable to that of FastTrack, but may introduce additional 
false positives. Multilock-HB accurately detects actually 
occurred and potential data races; however, it incurs a large 
amount of computational runtime overhead. The latest study on 
hybrid detection [16] provides the fastest hybrid detection 
technique that may miss a data race when both accesses of the 
data race are protected by different locks. This study compared 
the detection capability and runtime slowdown among 
FastTrack, Multilock-HB, and SimpleLock+ on the same 
RoadRunner framework using the Dacapo and Grand 
benchmark suites. 

To relax the sensitivity to thread interleaving while 
maintaining the precision of HB detection, CP detection based 
on a CP relation [17] was recently proposed. The authors of 
[17] demonstrated that CP can detect more data races than HB 
detection, and compared the detection speed to HB detection 
using small-sized (86–49k LOC) benchmark programs. 
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Maximal sound predictive detection (RVPredict) [18] is a 
dynamic detection technique that uses branch information from 
the source code of a program. It detects data races by 
formulating race detection as a constraint-solving problem. The 
authors of [18] demonstrated the detection capability and 
scalability of RVPredict, CP, HB detection, and Said and others 
[23] using the small-sized IBM Contest benchmark suite and 
the parallel Java Grand benchmark programs (with a reduced 
data set). All algorithms were implemented in RVPredict. 

In this paper, we compare the detection speed, capability, and 
accuracy of the current pure dynamic data race detection 
techniques (FastTrack, Acculock, Multilock-HB, SimpleLock+, 
and CP) using the most-used large-scale benchmark suites 
without modification and small benchmark programs on the 
same platform. 

Static analysis: To statically prevent data races, Flanagan 
and Freund [24] proposed a type-checking system based on 
previous research that describes a race-free type system for a 
concurrent object calculus [25]. This approach is extended by 
[26] and [27] using the concept of ownership. A type and effect 
system [28]–[30] provides deterministic semantics for object-
oriented languages. These type systems have good scalability 
but require user annotations.  

Detectors based on data flow analysis can report potential 
data races but produce many false alarms and are difficult to 
scale to large programs. The object use graph-based technique 
[31] reports object races using an approximation of the HB 
relation of accesses to an object by different threads. Chord 
[32] improved the precision of lockset computation using k-
object context sensitivity. Follow-up research [33] refined this 
study using a conditional must not aliasing property to reduce 
false positives.  

Recent static detectors specialized in specific kinds of 
program structures or data races to improve precision and 
scalability. IteRace [34] is a set of three techniques that are 
specialized to the parallel loops for collections that are 
introduced in Java 8. CTADetector [35] uses static analysis to 
detect a misused CHECK-THEN-ACT idiom that is a 
composition of two operations where a check on the 
concurrent collection precedes an action. 

III. Background 

Dynamic data race detection algorithms can be categorized 
into Lockset, HB, and hybrid detection algorithms. Among 
them, Lockset algorithms are not used alone because of their 
high false-positive rate. Therefore, we exclude Lockset 
algorithms from our comparison. 

FastTrack is a state-of-the-art HB detection technique. 
Although many sampling and vector clock-sharing techniques 

[10], [11], [12], [36] have been proposed, there is no HB 
algorithm better than FastTrack at this writing. On the other 
hand, various hybrid detection techniques have been 
continuously suggested. We selected three current techniques 
with different characteristics in terms of accuracy and runtime 
overhead: Acculock, Multilock-HB, and SimpleLock+.  

CP detection is the latest dynamic detection method used to 
relax scheduling sensitivity and remove the possibility of 
false positives that may be generated by hybrid detection 
techniques. For a precise comparison of detection overhead 
and detection capability, we include CP detection in our 
comparison, although it has yet to be commonly used for 
program testing. 

1. FastTrack 

FastTrack reduces the complexity of most VC comparisons 
(⊑) from O (n) to O (l) by introducing an epoch-VC 
comparison (≼). Herein, an epoch includes only a clock and a 
thread id (tid). The epoch is used to record the last write and 
read of the totally ordered writes and reads. Algorithm 1 shows 
the FastTrack algorithm. FastTrack maintains vector clocks Ct 
and Lm for each thread t and lock m. The clock entry Ct(u) 
records the clock for the last event of thread u that happens 
before the current event of thread t. In Algorithm 1, E(t) returns 
the current epoch of thread t. The clock-update algorithm of 
FastTrack for the lock acquire and release, as well as for 
explicit synchronizations (fork and join), is the same as in 
previous VC-based race detectors including Djit+. 
 

Algorithm 1. FastTrack 

Lock acquire: t acquires a lock m 

1:  Ct ← Ct ⊔ Lm; 

Lock release: t releases a lock m 
2:  Lm ← Ct; 
Fork and Join: t creates u; t blocks until u terminates 

3:  Ct ← Ct ⊔	Lm; 

4:  Ct[t] ← Ct[t] + 1; 
Read: t reads from x 
5:   if  (Rx = E(t)) return; 

6:   if (Wx ⋠ Ct) report a warning;      //write-read race 

7:   if  (|Rx | = 1 ∧ Rx ≼	Ct )  

8:        Rx ← E(t); 
9:  else  
10:    Rx[t] ← Ct[t]; 
Write: t writes to x 
11:  if Wx = E(t) return; 

12:  if (Wx ⋠ Ct) report a warning;       // write-write race 
13:  if |(Rx | ≤ 1) { 

14:      if (Rx ⋠ Ct) report a warning;  // read-write race 

15:   } else {  
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16:      if (Rx⋢Ct) report a warning;   //read-write race 

17:   } 
18:   Rx ← ; 

19:   Wx ← E(t); 

 
FastTrack reports a write-read race if the last write access to 

shared memory location x does not occur before the current 
read access to x (line 6 of Algorithm 1). In addition, it reports a 
read-write race if the last read of totally ordered read access to x 
does not occur before the current write access to x (line 14 of 
Algorithm 1). In another case, FastTrack reports a read-write 
race if the VCs of the last read access and current write are not 
partially ordered (line 16 of Algorithm 1).  

2. Hybrid Detection 

Hybrid detection that combines HB and Lockset detection, 
and has its origins in Hybrid [10], aims to increase the detection 
capability by weakening the sensitivity to a thread interleaving 
sequence of HB detection. Hybrid detectors can report 
potential data races in a single execution trace. To detect 
additional potential data races, hybrid detectors monitor the sets 
of locks (locksets) that are protecting the shared memory 
accesses. In addition, they do not conduct vector clock 
operations for lock acquire and release events because the HB 
relation between two accesses of different threads owing to the 
lock acquire-release can be changed in other thread 
interleaving sequences. That is, a relaxed HB relation is used, 
which is held when two different accesses of different threads 
are ordered through explicit synchronizations such as a fork 
and join, with the exception of lock operations. 

For hybrid detection, Lockset is applied for two accesses  
that are not ordered through explicit synchronizations. The 
underlying idea of Lockset is that, to prevent data races, all 
accesses of multiple threads to a shared memory location must 
be protected through the same lock. Algorithm 2 shows the 
basic algorithm of Lockset. 

Algorithm 2. Lockset 

1:  For each x, initialize Lx to the set of all locks; 
2:  On each access to x by thread t 
3:  Lx ← Lx ∩ Lt; 
4:  if (Lx = ) report a warning; 

 
Hybrid detection requires a high runtime overhead to 

accurately detect data races because it maintains the access 
history and the related information (the set of locks and clocks) 
for each access. 

A. Acculock and Multilock-HB 

Acculock first introduced an epoch representation, which 

was presented by FastTrack, into hybrid detection. In addition, 
Acculock only keeps a lockset that protects the last read access 
to shared memory location x for each thread. In addition, it 
maintains the intersection of the two locksets protecting the last 
and the previous write accesses to x when these two accesses 
are not ordered through explicit synchronizations. That is, 
Acculock keeps only one lockset and epoch for write accesses 
to x regardless of the number of threads. Therefore, Acculock 
has a low memory requirement and a fast detection speed 
comparable to that of FastTrack. However, Acculock generates 
additional false positives when nested locks are used because it 
must maintain the subset of the access information. Acculock 
provides O(nlogl) complexity for the number of elements l in a 
lockset. 

Multilock-HB was introduced to remove the false positives 
of Acculock. To remove the false positives, Multilock-HB 
maintains all read and write access histories for each thread. 
Each item of a read and write access history includes a lockset 
and a clock for each read and write access. To avoid duplicated 
race warnings to the same shared memory location and to 
reduce the runtime overhead, Multilock-HB provides an 
optimization technique but requires a large amount of memory 
and time for large-scale real-world programs. The complexity 
of Multilock-HB is O(nmlogl) for the number of threads n, the 
length of access events m, and the number of elements l in a 
lockset. 

B. SimpleLock+ 

SimpleLock+ was proposed to improve the performance of 
the previous accurate hybrid detector. SimpleLock+ improves 
the performance based on two assumptions: (1) most data races 
are caused by accesses without any lock protection to a shared 
memory location, and (2) the distance between two accesses 
that cause a data race is not long. 

Based on the first assumption, SimpleLock+ only reports a 
data race when at least one access of a race is not protected 
through any locks (zero-locked access). This technique 
replaces the set intersection operations of the previous hybrid 
detection into Boolean operations that verify the existence of 
locks protecting the accesses. Based on the second assumption, 
SimpleLock+ maintains information on the reads and writes 
after the last explicit synchronization of all threads for each 
shared memory location. This information includes two clocks 
for a read and write, and two flags indicating whether a read or 
write not protected by any lock during the clocks occurs. 

Owing to the above two improvement techniques, 
SimpleLock+ provides O(n) complexity for the number of 
threads n, and generates a fast detection speed comparable to 
that of FastTrack. However, SimpleLock+ may miss data races 
if two accesses of different threads that are not ordered by 
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Fig. 1. Example of a predictable data race. 
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explicit synchronizations are protected through different locks. 

3. CP Detection 

CP detection reports a data race by checking the CP relation 
between two accesses to a shared memory location. A CP 
relation is a new relation proposed in 2012 that generalizes an 
HB relation to detect more data races without introducing false 
positives or false negatives. CP detectors can detect potential 
data races as well as actually occurred data races in one 
execution trace. Although detected data races are a subset of 
the results from hybrid detectors, CP detectors do not report 
false warnings that hybrid detectors may generate owing to the 
algorithmic limitations of hybrid detection. 

A CP relation is a subset of an HB relation, and can partially 
detect potential data races that may be missed by HB detectors. 
Figure 1 shows an example of these data races.  

In Fig. 1, HB detectors cannot detect a data race on x because a 
lock release of t1 happens before the lock acquisition of t2, 
masking the lack of synchronization between the write of t1 and 
the read of t1 on x. However, CP detection can predict this data 
race based on the definition of the CP (<<CP) relation as follows: 
• <<CP has a release-acquire edge between critical sections 

over the same lock that contains conflicting events. Herein, 
two events by different threads conflict if they access the 
same shared memory location and one of them is a write. 

• <<CP has a release-acquire edge between critical sections 
over the same lock that contains CP-ordered events. 

• CP is closed under left and right compositions with HB. 

IV. Performance Comparison 

We compared the performance of five data race detection 
techniques: FastTrack (FT), Acculock (AC), Multilock-HB 
(ML), SimpleLock+ (SL+), and CP detection (CP). The 
evaluation was conducted on the same platform using 21 Java 

benchmark programs. Time, detection capability, and accuracy 
were considered. 

1. Implementation 

The race detection techniques being evaluated are 
categorized into two types: online (runtime) and offline 
detection. FT, AC, ML, and SL+ are VC-based online 
detection techniques. We implemented four online detection 
techniques in the RoadRunner framework as independent tools. 
RoadRunner is a dynamic analysis framework for Java 
programs, which provides event handlers for memory and 
synchronization operations that are executed during program 
execution. These event handlers can be overridden to 
implement user-defined data race detectors. RoadRunner relies 
on the just-in-time compiler to optimize the instrumentation 
code and tool dispatches. For the offline detection technique 
(CP), we borrowed the implementation from [18] for the most 
efficient implementation. CP was implemented in RVPredict, 
which is available at http://fsl.cs.illinois.edu/rvpredict/. 
RVPredict first stores the execution traces (including shared 
data accesses and synchronization events) into a database, and 
then conducts a predictive analysis based on these traces. 

2. Methodology 

A. Platform  

The evaluation was conducted on a machine with a     
3.40 GHz Intel Core i7-3770K (quad core) CPU and 32 GB of 
RAM running 64-bit Ubuntu 12.4 OS. The SSD free space 
was 10 GB, which was used for recording the execution traces 
of CP. We installed H2 database engine 1.4 to manage the 
execution traces on our SSD. 

B. Benchmark Configuration 

We conducted out experiments on 21 different benchmark 
programs, which were classified into two groups. The first 
group includes small example programs that were used in the 
previous work [18]: critical, airline, account, pingpong, bbuffer, 
bubblesort, bufwriter, mergesort, raytracer-s, montecarlo-s, 
and moldyn-s. In this first group, raytracer-s, montecarlo-s, and 
moldyn-s are modifications of raytracer, montecarlo, and 
moldyn from the parallel Java Grand benchmark suite, 
respectively, and shrink the internal data size to reduce the 
program execution time.  

The second group includes large-scale real-world applications 
that were selected from the parallel Java Grand benchmark suite 
and Dacapo benchmark suite (9.12 bach), which were generally 
used for comparing the performance of race detection algorithms 
in previous research [9], [10], [14], [15], [16], [36], [37]. We 
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Table 1. Benchmark descriptions. 

Program Description 

avrora 
Simulation tools for programs on a grid of AVR 
microcontrollers 

luindex 
Program that uses lucene to index a set of documents (the 
works of Shakespeare and the King James Bible) 

lusearch 
Program using lucene to do a text search by keywords over 
a corpus of data that comprises the works of Shakespeare 
and the King James Bible 

sunflow 
Renderer that processes a set of images using a ray tracing 
algorithm 

jython Python interpreter written in Java 

moldyn Molecular dynamics simulation program 

raytracer 3D ray tracing program 

montecarlo 
Financial simulation program using Monte Carlo 
techniques 

 

selected programs that are executed on the RoadRunner 
framework from the Dacapo benchmark suite. Table 1 lists brief 
descriptions of these large-scale benchmark programs.  

We configured moldyn, raytracer, and montecarlo to create 
four worker threads, used BenchSizeA as a dataset, and used 
the default settings for all other benchmark programs. Detailed 
characteristics such as the lines of code, the number of threads, 
and the number of memory accesses are listed in Tables 2 and 
3. Runtime detection techniques track all accesses to the 
elements of shared arrays only for small programs. For reasons 
of efficiency, we did not track each array element for large-
scale programs. 

C. Measuring Slowdowns 

We measured the running time and slowdowns of the target 
techniques. The running time of a detection technique is the 
total detection time, which includes the instrumentation time 
and execution time of the detection algorithm. A slowdown of 
a detection technique is the ratio of the instrumented running 
time to the original running time of the benchmark program. 
For FT, AC, ML, and SL+, we measured the runtime 
instrumentation and detection time on the RoadRunner 
framework. For CP, we summed the instrumentation, logging, 
and offline detection times. We executed and measured each 
detection technique 10 times using the same input, and 
averaged the results.  

D. Counting Race Warnings 

Similar to the measurement of the slowdown of each 
detection technique, we conducted 10 executions for each 
technique using the same input. We counted only the number 
of warnings for distinct shared variables during the 10 
executions.  

With the total number of reported data races, we also 
specified the number of true data races only when the hybrid 
detectors reported more races than FT. For the 12 small 
benchmark programs, we verified the true data races by 
analyzing the source code and execution trace manually 
because these programs are simple enough for manual analysis. 
For the eight large-scale programs, we randomly and 
heuristically inserted noises by calling a Java sleep () method 
before the accesses to shared variables by threads because we 
could not find a systematic method or an automatic tool to 
precisely verify a data race in these large-scale programs.  

The insertion of the sleep () method can allow for variety in 
the thread interleaving sequences of a program. Then, we 
analyzed the executions using FT to precisely check whether 
the shared variables cause data races. We considered only 
shared variables that were reported by the hybrid detectors. 
When we could not expose a data race to a shared variable, we 
decided that the warning for the shared variable was not a true 
positive. 

3. Results and Analysis 

Table 2 lists the running times and the number (total 
warnings and true positives) of data races for the five dynamic 
detection techniques studied (FT, AC, SL+, ML, and CP) on 
small benchmark programs. We measured the total running 
time instead of the runtime overhead because CP is an offline 
detection technique based on the analysis of the execution-trace 
information recorded in a database. In addition, Table 3 lists the 
runtime overheads and the number (total warnings and true 
positives) of data races of the online detection techniques (FT, 
AC, SL+, and ML) on large-scale benchmark programs. We 
could not run CP on the large-scale benchmark programs 
owing to a lack of disk space required to record the execution-
trace information generated by CP. A general computer that is 
used by a developer has difficulty in handling the excessive 
amount of execution traces, which exceeds dozens of gigabytes 
using CP because of its significant processing and memory 
requirements. 

A. Overall Results 

The CP was shown to be about 8.2 times slower than 
FastTrack, but the detection capability was the same for all 
small benchmark programs array, critical, airline, account, 
pingpong, bbuffer, bubblesort, bufwriter, mergesort, raytracer-
s, montecarlo-s, and moldyn-s. Based on this fact, we can infer 
that the types of potential data races that CP can detect, as 
shown in Fig. 1, are not general. 

All hybrid detectors (SL+, AC, and ML) reported more data 
races than FastTrack, and SL+ generated the lowest amount 
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Table 2. Running time and number of data races of five dynamic detection techniques on small benchmark programs. 

Trace Running time (s) Data race 

Program LoC 
Thread Access

Ex-Synch 
+Volatile 

FT AC SL+ ML CP FT 
AC 
(TP) 

SL+ 
(TP) 

ML 
(TP) 

CP 

avrora 40 2 11 0 0.3 0.4 0.4 0.4 2.0 0 1(1) 1(1) 1(1) 0 

critical 63 3 20 1 0.3 0.3 0.3 0.3 2.2 1 1 1 1 1 

airline 83 11 127 0 0.4 0.5 0.5 0.3 2.4 1 1 1 1 1 

account 87 3 83 1 0.8 0.8 0.8 0.8 2.3 2 1 2 2 2 

pingpong 124 18 116 3 0.3 0.3 0.3 0.3 2.4 2 2 2 2 2 

bbuffer 334 4 1K 48 0.4 0.5 0.5 0.6 3.7 2 2 2 2 2 

bubblesort 274 26 6.5k 0 0.6 0.6 0.5 1.1 3.2 2 2 2 2 2 

bufwriter 199 5 6.5k 4 0.3 0.3 0.3 0.3 2.7 2 4(4) 4(4) 4(4) 2 

mergesort 298 5 0.7k 2 0.4 0.4 0.3 0.4 3.2 1 1 0 1 1 

raytracer-s 2.0k 4 28.2k 4.5k 0.5 0.6 0.5 0.7 5.3 3 3 2 3 3 

montecarlo-s 3.6k 4 6.3M 3 0.5 0.4 0.4 0.4 15.6 0 0 0 0 0 

moldyn-s 1.4k 4 259k 29.2k 1.5 2.2 0.9 6.7 6.4 2 2 2 2 2 

Total 8.5k  6.6M 33.7k 6.3 7.3 5.7 11.3 51.4 18 21(21) 19(19) 21(21) 18 

Ex-Synch: explicit synchronization, volatile: volatile-variable access, TP: true positive 

Table 3. Runtime slowdowns and number of data races of four online detection techniques on large-scale benchmark programs. 

Trace Slowdown Data race 
Program 

Threads 
Access 

(M) 
Ex-Synch 

+Volatile (K) 
FT AC SL+ ML FT 

AC 

(TP) 

SL+ 

(TP) 

ML 

(TP) 

avrora 7 889.4 577.0 5.5 7.2 6.6 855.7 3 4(3) 4(3) 4(3) 

luindex 2 273.5 1.7 8.6 13.9 12.1 20.4 1 1 1 1 

lusearch 10 497.8 1,153.3 9.0 12.6 11.2 549.8 0 2(0) 2(0) 2(0) 

sunflow 17 3,396.3 0.0 43.3 71.9 66.3 120.2 5 31(31) 31(31) 31(31) 

jython 2 638.8 4,594.1 7.7 9.8 10.9 1,228.4 21 22(21) 22(21) 22(21) 

raytracer 4 1,521.3 0.0 95.0 135.8 90.7 281.8 1 1 0 1 

montecarlo 4 166.9 0.0 9.1 10.6 9.3 12.8 1 1 1 1 

moldyn 4 598.4 1.2 57.5 85.8 68.5 159.8 0 0 0 0 

Total  7982.3 6,327.3     32 62(58) 61(57) 62(58) 

Average    29.5 43.5 34.5 403.6     

Ex-Synch: explicit synchronization, volatile: volatile-variable access, TP: true positive 

 

of overhead for all benchmark programs. The overhead of SL+ 
was 1.2 times that of FastTrack on our large-scale benchmark 
programs, but SL+ missed one true data race that ML reported 
on raytracer. ML provides the highest detection capability 
without the possibility of false positives that may be introduced 
by AC, and detected 29 more true data races than FT on our 
benchmark programs. However, the runtime overhead of ML 
is 13.7 times that of FT on large-scale benchmark programs, 
and reaches 159.5 times on jython. 

B. Running Time and Runtime Overhead 

Figure 3 illustrates the running time of the five dynamic 

detection techniques, which are listed in Table 2. As shown in 
Fig. 2, the CP is about 9.3-times slower than FastTrack for the 
12 small benchmark programs array, critical, airline, account, 
pingpong, bbuffer, bubblesort, bufwriter, mergesort, raytracer-
s, montecarlo-s, and moldyn-s. In particular, CP requires a long 
detection time for long-running programs that generate many 
access events (montecarlo-s), as shown in Fig. 3. 

With the exception of CP, the online detection techniques 
show a similar running time on the 12 small benchmark 
programs. ML shows a particularly high runtime overhead for 
bubblesort and montecarlo-s, which have many threads, and 
generates many explicit synchronization and volatile-variable  
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Fig. 2. Running time of five dynamic detection techniques on
small benchmark programs. 
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Fig. 3. Number of shared memory accesses. 
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access events. 

SL+ shows the shortest total running time among all four 
techniques. The total running time of SL+ is 0.91 times that of 
FT. In particular, SL+ provides a shorter running time on 
programs that have many threads, or that generate a lot of 
explicit and volatile-variable access events, such as bubblesort, 
raytracer-s, and moldyn-s. 

To analyze the performance correlation between the types of 
events (memory access and synchronization events) and the 
online detection techniques, we measured the runtime 
overhead of these techniques on large-scale benchmark 
programs. Because of the very high overhead of ML on jython, 
we limited the length of history that ML must maintain for 
each thread to 3,000. 

Figure 4 illustrates the runtime overhead of the online 
detection techniques listed in Table 3. To easily distinguish  
the program groups that incur high detection overhead, we 
classified the benchmark programs into three categories, as 
shown in Fig. 5. Categories 1 is the program group of long-
running programs that generate many shared memory accesses. 
Category 2 generates many synchronizations (explicit 
synchronizations and volatile-variable access) but generates a 
smaller number of shared memory accesses than Category 1.  

 

Fig. 4. Runtime overhead of online dynamic detection techniques 
on large-scale benchmark programs. 

av
ro

ra
  

lu
in

de
x 

  

lu
se

ar
ch

  

su
nf

lo
w

  
 

jy
th

on
  

ra
yt

ra
ce

r 
  

m
on

te
ca

rl
o 

m
ol

dy
n 

  
 

14

12

10

8

6

4

2

0

S
lo

w
do

w
n 

(1
02 ) 

FT AC SL+ ML

 
 

 

Fig. 5. Classification of large-scale benchmark programs. 
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Category 3 includes programs that generate a relatively small 
number of shared memory accesses and synchronizations. 

As shown in Fig. 4, ML generates the highest runtime 
overhead for all of the large-scale benchmark programs. In 
particular, ML generates very high overhead (532.6 times 
slower than the original program on average) for Category 1 
and Category 2. The overhead of ML on jython is more than 
1,228.4 times, which is 159.5 times that of FT. FT generates the 
lowest amount of runtime overhead, and SL+ and AC are   
1.2 times and 1.5 times slower than FT, respectively. In 
addition, FT, SL+, and AC generate slightly more overhead for 
Category 1 programs, which are long-running programs.  

As a result, FT shows the smallest amount of overhead, and 
SL+ was shown to be the fastest among the four other dynamic 
detection techniques studied. 

C. Detection Capability 

The detection capability of CP detection is the same as that 
for FastTrack in all of the small benchmark programs. On the 
small benchmark programs, all of the hybrid detection 
techniques (AC, SL+, and ML) additionally detected two 
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Fig. 6. Delay insertion in sunflow. 

1: package org.sunflow.core.accel; 
2: public class KDTree implements AccelerationStructure { 
3:   .. 
4:   public void intersect(Ray r, IntersectionState state) { 
5:     ..  
6:     sleep(40);/*delaying thread executions*/ 
7:     primitiveList.intersectPrimitive(r, primitives [offset], state); 
8:     .. 
9:   } 
10:  .. 
11:} 

 
 
potential data races in bufwriter, which were missed by FT. In 
addition, SL+ missed two potential data races in mergesort and 
raytracer-s, which were detected by AC and ML. We verified 
that all these potential data races are true data races that can be 
exposed in other thread interleaving sequences.  

For the large-scale benchmark programs, the hybrid 
detectors reported more data races than FastTrack. Among the 
hybrid detectors, AC and ML reported the same data races, and 
SL+ missed one in raytracer, which is identical to that missed 
by SL+ in raytracer-s. Although AC detected the same data 
races as ML on our benchmark programs, AC has the 
possibility of additional false positives, which were not 
reported by SL+ and ML, as described in Section II. 

Except for raytracer, hybrid detectors reported 30 more data 
races than FT on large-scale benchmark programs. Among 
these data races, we verified that 26 data races in sunflow are 
real data races, which can be exposed by delaying thread 
accesses to a shared variable during program execution using 
the Java sleep() method, as shown in Fig. 6. 

Figure 6 shows the part of the sunflow source code that we 
used to verify the data races that are reported from hybrid data 
races. We detected 31 data races using FT by inserting “sleep 
(40)” into delaying thread access to a shared memory location 
to which primitiveList is pointing.  

V. Conclusion 

We presented the performance comparison results of five 
recent dynamic data race detection techniques: FastTrack, 
Acculock, SimpleLock+, Multilock-HB, and CP detection. We 
conducted experiments on the same platform using 12 small 
and 8 large-scale benchmark programs. The comparison results 
show that CP detection has the highest amount of overhead 
among the five detection techniques, although the detection 
capability of CP detection does not surpass that of FastTrack on 
our benchmarks. SimpleLock+ generated the lowest amount of 
runtime overhead among the hybrid detection techniques 
(Acculock, SimpleLock+, and Multilock-HB) on all 
benchmarks, which is 1.2 times that of FastTrack on average. 
Unlike Acculock, SimpleLock+ does not introduce additional 

false positives into Multilock-HB, but misses 3.6% of the true 
data races reported by Mutilock_HB. Therefore, SimpleLock+ 
can be a good option for the frequent detection of data races 
during the development process, and MultiLock-HB can be 
used for the late stages of development for a more thorough 
check. We believe that our performance comparison in various 
aspects of the program characteristics can provide useful 
information for further research to improve the efficiency of 
current data race detection techniques. 
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