
124 Misun Yu et al. © 2017 ETRI Journal, Volume 39, Number 1, February 2017
https://doi.org/10.4218/etrij.17.0115.1027

Data races are one of the most difficult types of bugs in
concurrent multithreaded systems. It requires significant
time and cost to accurately detect bugs in complex large-
scale programs. Although many race detection techniques
have been proposed by various researchers, none of them
are effective in all aspects. In this paper, we compare
the performance of five recent dynamic race detection
techniques: FastTrack, Acculock, Multilock-HB,
SimpleLock+, and causally precedes (CP) detection. We
experimentally demonstrate the strengths and weaknesses
of these dynamic race detection techniques in terms of
their detection capability, running time, and runtime
overhead using 20 benchmark programs with different
characteristics. The comparison results show that the
detection capability of CP detection does not differ from
that of FastTrack, and that SimpleLock+ generates the
lowest overhead among the hybrid detection techniques
(Acculock, SimpleLock+, and Multilock-HB) for all
benchmark programs. SimpleLock+ is 1.2 times slower
than FastTrack on average, but misses one true data race
reported from Mutilock-HB on the large-scale benchmark
programs.

Keywords: Data race, Dynamic detection,
Multithreaded programming, Debugging, happens before,
Lockset, Causally precedes.

Manuscript received Dec. 1, 2015; revised Oct. 4, 2016; accepted Nov. 15, 2016. This work
was supported by Dual Use Technology Program through Civil Military Technology
Cooperation Center funded by Ministry of Trade, Industry & Energy and Defense Acquisition
Program Administration.

Misun Yu (corresponding author, msyu@etri.re.kr), Seung-Min Park (minpark@etri.re.kr),
and Ingeol Chun (igchun@etri.re.kr) are with the SW & Content Research Laboratory, ETRI,
Daejeon, Rep. of Korea.

Doo-Hwan Bae (bae@se.kaist.ac.kr) is with the Software engineering Laboratory, KAIST,
Daejeon, Rep. of Korea.

This is an Open Access article distributed under the term of Korea Open Government
License (KOGL) Type 4: Source Indiction + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/news/dataFileDown.do?dataIdx=71&dataFileIdx=2).

I. Introduction

Multithreading is an essential programming technique
commonly used in fields ranging from operating systems to
mobile-multimedia applications for the purpose of improving
the performance or responsiveness of a particular program.
However, writing a correctly executing multithreaded program
is far more difficult than writing a correctly executing
sequential program owing to the nondeterminism in concurrent
thread executions. Nondeterministic thread interleaving may
produce nondeterministic outputs for the same input when
the threads are not properly synchronized. When this
nondeterministic thread behavior causes a system failure or
incorrect results, it is referred to as a concurrency bug. Owing
to the difficulty of detection, concurrency bugs may be
unintentionally left in a program after release, which can have
disastrous results [1], [2].

A data race is one type of concurrency bug that occurs when
two different threads access the same memory location without
an ordering constraint enforced between the accesses, where at
least one access is a write access [3]. Because a data race can
easily occur and is very common, a large number of studies
[4]–[18] on dynamic detection techniques have been conducted
to accurately detect as many as data races as possible by
analyzing the execution trace of a program. Among the
previous techniques, several [4], [5], [17] proposed
fundamental algorithms for developing precise or high-
coverage dynamic race detection techniques.

Based on these basic algorithms, some [6]–[16] proposed
various techniques to increase the performance of the previous
techniques. All of these dynamic detection techniques verified
their superiority by showing the running time, runtime
overheads, detection capability, and accuracy (ratio of false
positives), which are the important factors for the practical use
of a race detector. A low runtime slowdown frequently leads

Experimental Performance Comparison of
Dynamic Data Race Detection Techniques

 Misun Yu, Seung-Min Park, Ingeol Chun, and Doo-Hwan Bae

ETRI Journal, Volume 39, Number 1, February 2017 Misun Yu et al. 125
https://doi.org/10.4218/etrij.17.0115.1027

developers to use race detectors during the development phase
of a concurrent program, which can increase the reliability of
the program by rapidly removing problematic concurrency
bugs. With the detection speed, the detection capability and
accuracy should be considered to develop and select a race
detection tool because a high detection capability implies a
small number of repeated executions of a program for
detection, and a high accuracy implies a low laborious effort to
filter false warnings.

In this paper, we analyzed the performance of state-of-the-art
and current dynamic techniques in terms of detection speed,
capability, and accuracy on the same platform for a fair
comparison. We collected the performance data on these
techniques through extensive experiments using the same
benchmark programs and configurations. Our work makes the
following specific contributions:
• We select five pure dynamic data race detection techniques:

FastTrack, Acculock, Multilock-HB, SimpleLock+, and
Causally precedes (CP) detection. We evaluate their
performance on the same platform with the same input.

• We compare the running time, runtime overhead, detection
capability, and accuracy of all five detection techniques
using 12 small programs containing various data races, and
the most-used eight large-scale programs categorized into
three groups with different numbers of access and
synchronization events.

• Our experiments show that Multilock-HB and CP-detection
can accurately and precisely detect actually occurred and
potential data races. However, both methods require
significant processing time. In addition, we showed that
SimpleLock+ has almost the same detection capability and
accuracy as Multilock-HB, and generates a detection speed
similar to that of FastTrack.
The rest of this paper is organized as follows. Section II

discusses previous studies in this area. In Section IV, we briefly
review the dynamic data race detection techniques compared in
this paper. In Section III, an analysis of these techniques based
on the experimental results is presented. In Section V, we
provide some concluding remarks regarding this research.

II. Related Work

There have been a number of studies on increasing the
detection speed and capability of dynamic data race detection
techniques with high accuracy, especially for Java programs.
Here, we discuss the relevant research along two main axes:
dynamic analysis and static analysis. For dynamic analysis
techniques, we additionally describe their performance
evaluation methods.

Dynamic analysis: Djit+ [4] was the first vector clock (VC)-

based HB detector. To complement the high detection
overhead of Djit+, sampling techniques and a combination of
Djit+ and a Lockset algorithm [5] such as LiteRace [6],
RaceTrack [7], or MultiRace [8] have been proposed. Although
these complementary techniques reduced the detection speed
and memory requirement, Djit+ provided the highest precision
before the appearance of FastTrack.

FastTrack is the fastest race detection algorithm that reduces
the overhead of the VC operations of Djit+ without sacrificing
accuracy using an epoch-based representation. FastTrack
showed its effectiveness by comparing the memory overhead
and runtime slowdown of Djit+ using 16 benchmark programs
including small-sized (86–111k lines of code (LOC)) programs
collected from the SPEC JVM98 [19] and the parallel Java
Grand benchmark suite [20]. After FastTrack was proposed,
sampling techniques such as Pacer [10] CARISMA [11], and a
dynamic granularity algorithm [12] were suggested to improve
its detection speed by minimizing the number of missing data
races. The detection capability, runtime overhead, and memory
usage of CARISMA was compared with those of FastTrack on
the same RoadRunner framework [21] using the subset of
SPEC JVM 98 and Dacapo benchmarks [22]. Pacer was
implemented on the Jikes RVM and compared the detection
capability and runtime overhead to LiteRace using the DaCapo
benchmark suite and SPEC JBB2000.

A shortcoming of the HB detection technique is that it cannot
detect hidden data races that are detectable in other thread
interleaving sequences. To report hidden races as well as
actually occurred data races, hybrid detection was introduced.
This [13] is the first hybrid detection method that combines
HB-relation and Lockset-based detection algorithms. Acculock
and Multilock-HB [15] are epoch-based hybrid detectors based
on Hybrid. Acculock provides a fast detection speed
comparable to that of FastTrack, but may introduce additional
false positives. Multilock-HB accurately detects actually
occurred and potential data races; however, it incurs a large
amount of computational runtime overhead. The latest study on
hybrid detection [16] provides the fastest hybrid detection
technique that may miss a data race when both accesses of the
data race are protected by different locks. This study compared
the detection capability and runtime slowdown among
FastTrack, Multilock-HB, and SimpleLock+ on the same
RoadRunner framework using the Dacapo and Grand
benchmark suites.

To relax the sensitivity to thread interleaving while
maintaining the precision of HB detection, CP detection based
on a CP relation [17] was recently proposed. The authors of
[17] demonstrated that CP can detect more data races than HB
detection, and compared the detection speed to HB detection
using small-sized (86–49k LOC) benchmark programs.

126 Misun Yu et al. ETRI Journal, Volume 39, Number 1, February 2017
https://doi.org/10.4218/etrij.17.0115.1027

Maximal sound predictive detection (RVPredict) [18] is a
dynamic detection technique that uses branch information from
the source code of a program. It detects data races by
formulating race detection as a constraint-solving problem. The
authors of [18] demonstrated the detection capability and
scalability of RVPredict, CP, HB detection, and Said and others
[23] using the small-sized IBM Contest benchmark suite and
the parallel Java Grand benchmark programs (with a reduced
data set). All algorithms were implemented in RVPredict.

In this paper, we compare the detection speed, capability, and
accuracy of the current pure dynamic data race detection
techniques (FastTrack, Acculock, Multilock-HB, SimpleLock+,
and CP) using the most-used large-scale benchmark suites
without modification and small benchmark programs on the
same platform.

Static analysis: To statically prevent data races, Flanagan
and Freund [24] proposed a type-checking system based on
previous research that describes a race-free type system for a
concurrent object calculus [25]. This approach is extended by
[26] and [27] using the concept of ownership. A type and effect
system [28]–[30] provides deterministic semantics for object-
oriented languages. These type systems have good scalability
but require user annotations.

Detectors based on data flow analysis can report potential
data races but produce many false alarms and are difficult to
scale to large programs. The object use graph-based technique
[31] reports object races using an approximation of the HB
relation of accesses to an object by different threads. Chord
[32] improved the precision of lockset computation using k-
object context sensitivity. Follow-up research [33] refined this
study using a conditional must not aliasing property to reduce
false positives.

Recent static detectors specialized in specific kinds of
program structures or data races to improve precision and
scalability. IteRace [34] is a set of three techniques that are
specialized to the parallel loops for collections that are
introduced in Java 8. CTADetector [35] uses static analysis to
detect a misused CHECK-THEN-ACT idiom that is a
composition of two operations where a check on the
concurrent collection precedes an action.

III. Background

Dynamic data race detection algorithms can be categorized
into Lockset, HB, and hybrid detection algorithms. Among
them, Lockset algorithms are not used alone because of their
high false-positive rate. Therefore, we exclude Lockset
algorithms from our comparison.

FastTrack is a state-of-the-art HB detection technique.
Although many sampling and vector clock-sharing techniques

[10], [11], [12], [36] have been proposed, there is no HB
algorithm better than FastTrack at this writing. On the other
hand, various hybrid detection techniques have been
continuously suggested. We selected three current techniques
with different characteristics in terms of accuracy and runtime
overhead: Acculock, Multilock-HB, and SimpleLock+.

CP detection is the latest dynamic detection method used to
relax scheduling sensitivity and remove the possibility of
false positives that may be generated by hybrid detection
techniques. For a precise comparison of detection overhead
and detection capability, we include CP detection in our
comparison, although it has yet to be commonly used for
program testing.

1. FastTrack

FastTrack reduces the complexity of most VC comparisons
(⊑) from O (n) to O (l) by introducing an epoch-VC
comparison (≼). Herein, an epoch includes only a clock and a
thread id (tid). The epoch is used to record the last write and
read of the totally ordered writes and reads. Algorithm 1 shows
the FastTrack algorithm. FastTrack maintains vector clocks Ct
and Lm for each thread t and lock m. The clock entry Ct(u)
records the clock for the last event of thread u that happens
before the current event of thread t. In Algorithm 1, E(t) returns
the current epoch of thread t. The clock-update algorithm of
FastTrack for the lock acquire and release, as well as for
explicit synchronizations (fork and join), is the same as in
previous VC-based race detectors including Djit+.

Algorithm 1. FastTrack

Lock acquire: t acquires a lock m

1: Ct ← Ct ⊔ Lm;

Lock release: t releases a lock m
2: Lm ← Ct;
Fork and Join: t creates u; t blocks until u terminates

3: Ct ← Ct ⊔	Lm;

4: Ct[t] ← Ct[t] + 1;
Read: t reads from x
5: if (Rx = E(t)) return;

6: if (Wx ⋠ Ct) report a warning; //write-read race

7: if (|Rx | = 1 ∧ Rx ≼	Ct)

8: Rx ← E(t);
9: else
10: Rx[t] ← Ct[t];
Write: t writes to x
11: if Wx = E(t) return;

12: if (Wx ⋠ Ct) report a warning; // write-write race
13: if |(Rx | ≤ 1) {

14: if (Rx ⋠ Ct) report a warning; // read-write race

15: } else {

ETRI Journal, Volume 39, Number 1, February 2017 Misun Yu et al. 127
https://doi.org/10.4218/etrij.17.0115.1027

16: if (Rx⋢Ct) report a warning; //read-write race

17: }
18: Rx ← ;

19: Wx ← E(t);

FastTrack reports a write-read race if the last write access to

shared memory location x does not occur before the current
read access to x (line 6 of Algorithm 1). In addition, it reports a
read-write race if the last read of totally ordered read access to x
does not occur before the current write access to x (line 14 of
Algorithm 1). In another case, FastTrack reports a read-write
race if the VCs of the last read access and current write are not
partially ordered (line 16 of Algorithm 1).

2. Hybrid Detection

Hybrid detection that combines HB and Lockset detection,
and has its origins in Hybrid [10], aims to increase the detection
capability by weakening the sensitivity to a thread interleaving
sequence of HB detection. Hybrid detectors can report
potential data races in a single execution trace. To detect
additional potential data races, hybrid detectors monitor the sets
of locks (locksets) that are protecting the shared memory
accesses. In addition, they do not conduct vector clock
operations for lock acquire and release events because the HB
relation between two accesses of different threads owing to the
lock acquire-release can be changed in other thread
interleaving sequences. That is, a relaxed HB relation is used,
which is held when two different accesses of different threads
are ordered through explicit synchronizations such as a fork
and join, with the exception of lock operations.

For hybrid detection, Lockset is applied for two accesses
that are not ordered through explicit synchronizations. The
underlying idea of Lockset is that, to prevent data races, all
accesses of multiple threads to a shared memory location must
be protected through the same lock. Algorithm 2 shows the
basic algorithm of Lockset.

Algorithm 2. Lockset

1: For each x, initialize Lx to the set of all locks;
2: On each access to x by thread t
3: Lx ← Lx ∩ Lt;
4: if (Lx =) report a warning;

Hybrid detection requires a high runtime overhead to

accurately detect data races because it maintains the access
history and the related information (the set of locks and clocks)
for each access.

A. Acculock and Multilock-HB

Acculock first introduced an epoch representation, which

was presented by FastTrack, into hybrid detection. In addition,
Acculock only keeps a lockset that protects the last read access
to shared memory location x for each thread. In addition, it
maintains the intersection of the two locksets protecting the last
and the previous write accesses to x when these two accesses
are not ordered through explicit synchronizations. That is,
Acculock keeps only one lockset and epoch for write accesses
to x regardless of the number of threads. Therefore, Acculock
has a low memory requirement and a fast detection speed
comparable to that of FastTrack. However, Acculock generates
additional false positives when nested locks are used because it
must maintain the subset of the access information. Acculock
provides O(nlogl) complexity for the number of elements l in a
lockset.

Multilock-HB was introduced to remove the false positives
of Acculock. To remove the false positives, Multilock-HB
maintains all read and write access histories for each thread.
Each item of a read and write access history includes a lockset
and a clock for each read and write access. To avoid duplicated
race warnings to the same shared memory location and to
reduce the runtime overhead, Multilock-HB provides an
optimization technique but requires a large amount of memory
and time for large-scale real-world programs. The complexity
of Multilock-HB is O(nmlogl) for the number of threads n, the
length of access events m, and the number of elements l in a
lockset.

B. SimpleLock+

SimpleLock+ was proposed to improve the performance of
the previous accurate hybrid detector. SimpleLock+ improves
the performance based on two assumptions: (1) most data races
are caused by accesses without any lock protection to a shared
memory location, and (2) the distance between two accesses
that cause a data race is not long.

Based on the first assumption, SimpleLock+ only reports a
data race when at least one access of a race is not protected
through any locks (zero-locked access). This technique
replaces the set intersection operations of the previous hybrid
detection into Boolean operations that verify the existence of
locks protecting the accesses. Based on the second assumption,
SimpleLock+ maintains information on the reads and writes
after the last explicit synchronization of all threads for each
shared memory location. This information includes two clocks
for a read and write, and two flags indicating whether a read or
write not protected by any lock during the clocks occurs.

Owing to the above two improvement techniques,
SimpleLock+ provides O(n) complexity for the number of
threads n, and generates a fast detection speed comparable to
that of FastTrack. However, SimpleLock+ may miss data races
if two accesses of different threads that are not ordered by

128 Misun Yu et al. ETRI Journal, Volume 39, Number 1, February 2017
https://doi.org/10.4218/etrij.17.0115.1027

Fig. 1. Example of a predictable data race.

Thread t1

Thread t2
Lock m

Unlock m
Lock m

Unlock m

Write x

Write y

Read y

: Happens before

Read x

explicit synchronizations are protected through different locks.

3. CP Detection

CP detection reports a data race by checking the CP relation
between two accesses to a shared memory location. A CP
relation is a new relation proposed in 2012 that generalizes an
HB relation to detect more data races without introducing false
positives or false negatives. CP detectors can detect potential
data races as well as actually occurred data races in one
execution trace. Although detected data races are a subset of
the results from hybrid detectors, CP detectors do not report
false warnings that hybrid detectors may generate owing to the
algorithmic limitations of hybrid detection.

A CP relation is a subset of an HB relation, and can partially
detect potential data races that may be missed by HB detectors.
Figure 1 shows an example of these data races.

In Fig. 1, HB detectors cannot detect a data race on x because a
lock release of t1 happens before the lock acquisition of t2,
masking the lack of synchronization between the write of t1 and
the read of t1 on x. However, CP detection can predict this data
race based on the definition of the CP (<<CP) relation as follows:
• <<CP has a release-acquire edge between critical sections

over the same lock that contains conflicting events. Herein,
two events by different threads conflict if they access the
same shared memory location and one of them is a write.

• <<CP has a release-acquire edge between critical sections
over the same lock that contains CP-ordered events.

• CP is closed under left and right compositions with HB.

IV. Performance Comparison

We compared the performance of five data race detection
techniques: FastTrack (FT), Acculock (AC), Multilock-HB
(ML), SimpleLock+ (SL+), and CP detection (CP). The
evaluation was conducted on the same platform using 21 Java

benchmark programs. Time, detection capability, and accuracy
were considered.

1. Implementation

The race detection techniques being evaluated are
categorized into two types: online (runtime) and offline
detection. FT, AC, ML, and SL+ are VC-based online
detection techniques. We implemented four online detection
techniques in the RoadRunner framework as independent tools.
RoadRunner is a dynamic analysis framework for Java
programs, which provides event handlers for memory and
synchronization operations that are executed during program
execution. These event handlers can be overridden to
implement user-defined data race detectors. RoadRunner relies
on the just-in-time compiler to optimize the instrumentation
code and tool dispatches. For the offline detection technique
(CP), we borrowed the implementation from [18] for the most
efficient implementation. CP was implemented in RVPredict,
which is available at http://fsl.cs.illinois.edu/rvpredict/.
RVPredict first stores the execution traces (including shared
data accesses and synchronization events) into a database, and
then conducts a predictive analysis based on these traces.

2. Methodology

A. Platform

The evaluation was conducted on a machine with a
3.40 GHz Intel Core i7-3770K (quad core) CPU and 32 GB of
RAM running 64-bit Ubuntu 12.4 OS. The SSD free space
was 10 GB, which was used for recording the execution traces
of CP. We installed H2 database engine 1.4 to manage the
execution traces on our SSD.

B. Benchmark Configuration

We conducted out experiments on 21 different benchmark
programs, which were classified into two groups. The first
group includes small example programs that were used in the
previous work [18]: critical, airline, account, pingpong, bbuffer,
bubblesort, bufwriter, mergesort, raytracer-s, montecarlo-s,
and moldyn-s. In this first group, raytracer-s, montecarlo-s, and
moldyn-s are modifications of raytracer, montecarlo, and
moldyn from the parallel Java Grand benchmark suite,
respectively, and shrink the internal data size to reduce the
program execution time.

The second group includes large-scale real-world applications
that were selected from the parallel Java Grand benchmark suite
and Dacapo benchmark suite (9.12 bach), which were generally
used for comparing the performance of race detection algorithms
in previous research [9], [10], [14], [15], [16], [36], [37]. We

ETRI Journal, Volume 39, Number 1, February 2017 Misun Yu et al. 129
https://doi.org/10.4218/etrij.17.0115.1027

Table 1. Benchmark descriptions.

Program Description

avrora
Simulation tools for programs on a grid of AVR
microcontrollers

luindex
Program that uses lucene to index a set of documents (the
works of Shakespeare and the King James Bible)

lusearch
Program using lucene to do a text search by keywords over
a corpus of data that comprises the works of Shakespeare
and the King James Bible

sunflow
Renderer that processes a set of images using a ray tracing
algorithm

jython Python interpreter written in Java

moldyn Molecular dynamics simulation program

raytracer 3D ray tracing program

montecarlo
Financial simulation program using Monte Carlo
techniques

selected programs that are executed on the RoadRunner
framework from the Dacapo benchmark suite. Table 1 lists brief
descriptions of these large-scale benchmark programs.

We configured moldyn, raytracer, and montecarlo to create
four worker threads, used BenchSizeA as a dataset, and used
the default settings for all other benchmark programs. Detailed
characteristics such as the lines of code, the number of threads,
and the number of memory accesses are listed in Tables 2 and
3. Runtime detection techniques track all accesses to the
elements of shared arrays only for small programs. For reasons
of efficiency, we did not track each array element for large-
scale programs.

C. Measuring Slowdowns

We measured the running time and slowdowns of the target
techniques. The running time of a detection technique is the
total detection time, which includes the instrumentation time
and execution time of the detection algorithm. A slowdown of
a detection technique is the ratio of the instrumented running
time to the original running time of the benchmark program.
For FT, AC, ML, and SL+, we measured the runtime
instrumentation and detection time on the RoadRunner
framework. For CP, we summed the instrumentation, logging,
and offline detection times. We executed and measured each
detection technique 10 times using the same input, and
averaged the results.

D. Counting Race Warnings

Similar to the measurement of the slowdown of each
detection technique, we conducted 10 executions for each
technique using the same input. We counted only the number
of warnings for distinct shared variables during the 10
executions.

With the total number of reported data races, we also
specified the number of true data races only when the hybrid
detectors reported more races than FT. For the 12 small
benchmark programs, we verified the true data races by
analyzing the source code and execution trace manually
because these programs are simple enough for manual analysis.
For the eight large-scale programs, we randomly and
heuristically inserted noises by calling a Java sleep () method
before the accesses to shared variables by threads because we
could not find a systematic method or an automatic tool to
precisely verify a data race in these large-scale programs.

The insertion of the sleep () method can allow for variety in
the thread interleaving sequences of a program. Then, we
analyzed the executions using FT to precisely check whether
the shared variables cause data races. We considered only
shared variables that were reported by the hybrid detectors.
When we could not expose a data race to a shared variable, we
decided that the warning for the shared variable was not a true
positive.

3. Results and Analysis

Table 2 lists the running times and the number (total
warnings and true positives) of data races for the five dynamic
detection techniques studied (FT, AC, SL+, ML, and CP) on
small benchmark programs. We measured the total running
time instead of the runtime overhead because CP is an offline
detection technique based on the analysis of the execution-trace
information recorded in a database. In addition, Table 3 lists the
runtime overheads and the number (total warnings and true
positives) of data races of the online detection techniques (FT,
AC, SL+, and ML) on large-scale benchmark programs. We
could not run CP on the large-scale benchmark programs
owing to a lack of disk space required to record the execution-
trace information generated by CP. A general computer that is
used by a developer has difficulty in handling the excessive
amount of execution traces, which exceeds dozens of gigabytes
using CP because of its significant processing and memory
requirements.

A. Overall Results

The CP was shown to be about 8.2 times slower than
FastTrack, but the detection capability was the same for all
small benchmark programs array, critical, airline, account,
pingpong, bbuffer, bubblesort, bufwriter, mergesort, raytracer-
s, montecarlo-s, and moldyn-s. Based on this fact, we can infer
that the types of potential data races that CP can detect, as
shown in Fig. 1, are not general.

All hybrid detectors (SL+, AC, and ML) reported more data
races than FastTrack, and SL+ generated the lowest amount

130 Misun Yu et al. ETRI Journal, Volume 39, Number 1, February 2017
https://doi.org/10.4218/etrij.17.0115.1027

Table 2. Running time and number of data races of five dynamic detection techniques on small benchmark programs.

Trace Running time (s) Data race

Program LoC
Thread Access

Ex-Synch
+Volatile

FT AC SL+ ML CP FT
AC
(TP)

SL+
(TP)

ML
(TP)

CP

avrora 40 2 11 0 0.3 0.4 0.4 0.4 2.0 0 1(1) 1(1) 1(1) 0

critical 63 3 20 1 0.3 0.3 0.3 0.3 2.2 1 1 1 1 1

airline 83 11 127 0 0.4 0.5 0.5 0.3 2.4 1 1 1 1 1

account 87 3 83 1 0.8 0.8 0.8 0.8 2.3 2 1 2 2 2

pingpong 124 18 116 3 0.3 0.3 0.3 0.3 2.4 2 2 2 2 2

bbuffer 334 4 1K 48 0.4 0.5 0.5 0.6 3.7 2 2 2 2 2

bubblesort 274 26 6.5k 0 0.6 0.6 0.5 1.1 3.2 2 2 2 2 2

bufwriter 199 5 6.5k 4 0.3 0.3 0.3 0.3 2.7 2 4(4) 4(4) 4(4) 2

mergesort 298 5 0.7k 2 0.4 0.4 0.3 0.4 3.2 1 1 0 1 1

raytracer-s 2.0k 4 28.2k 4.5k 0.5 0.6 0.5 0.7 5.3 3 3 2 3 3

montecarlo-s 3.6k 4 6.3M 3 0.5 0.4 0.4 0.4 15.6 0 0 0 0 0

moldyn-s 1.4k 4 259k 29.2k 1.5 2.2 0.9 6.7 6.4 2 2 2 2 2

Total 8.5k 6.6M 33.7k 6.3 7.3 5.7 11.3 51.4 18 21(21) 19(19) 21(21) 18

Ex-Synch: explicit synchronization, volatile: volatile-variable access, TP: true positive

Table 3. Runtime slowdowns and number of data races of four online detection techniques on large-scale benchmark programs.

Trace Slowdown Data race
Program

Threads
Access

(M)
Ex-Synch

+Volatile (K)
FT AC SL+ ML FT

AC

(TP)

SL+

(TP)

ML

(TP)

avrora 7 889.4 577.0 5.5 7.2 6.6 855.7 3 4(3) 4(3) 4(3)

luindex 2 273.5 1.7 8.6 13.9 12.1 20.4 1 1 1 1

lusearch 10 497.8 1,153.3 9.0 12.6 11.2 549.8 0 2(0) 2(0) 2(0)

sunflow 17 3,396.3 0.0 43.3 71.9 66.3 120.2 5 31(31) 31(31) 31(31)

jython 2 638.8 4,594.1 7.7 9.8 10.9 1,228.4 21 22(21) 22(21) 22(21)

raytracer 4 1,521.3 0.0 95.0 135.8 90.7 281.8 1 1 0 1

montecarlo 4 166.9 0.0 9.1 10.6 9.3 12.8 1 1 1 1

moldyn 4 598.4 1.2 57.5 85.8 68.5 159.8 0 0 0 0

Total 7982.3 6,327.3 32 62(58) 61(57) 62(58)

Average 29.5 43.5 34.5 403.6

Ex-Synch: explicit synchronization, volatile: volatile-variable access, TP: true positive

of overhead for all benchmark programs. The overhead of SL+
was 1.2 times that of FastTrack on our large-scale benchmark
programs, but SL+ missed one true data race that ML reported
on raytracer. ML provides the highest detection capability
without the possibility of false positives that may be introduced
by AC, and detected 29 more true data races than FT on our
benchmark programs. However, the runtime overhead of ML
is 13.7 times that of FT on large-scale benchmark programs,
and reaches 159.5 times on jython.

B. Running Time and Runtime Overhead

Figure 3 illustrates the running time of the five dynamic

detection techniques, which are listed in Table 2. As shown in
Fig. 2, the CP is about 9.3-times slower than FastTrack for the
12 small benchmark programs array, critical, airline, account,
pingpong, bbuffer, bubblesort, bufwriter, mergesort, raytracer-
s, montecarlo-s, and moldyn-s. In particular, CP requires a long
detection time for long-running programs that generate many
access events (montecarlo-s), as shown in Fig. 3.

With the exception of CP, the online detection techniques
show a similar running time on the 12 small benchmark
programs. ML shows a particularly high runtime overhead for
bubblesort and montecarlo-s, which have many threads, and
generates many explicit synchronization and volatile-variable

ETRI Journal, Volume 39, Number 1, February 2017 Misun Yu et al. 131
https://doi.org/10.4218/etrij.17.0115.1027

Fig. 2. Running time of five dynamic detection techniques on
small benchmark programs.

ar
ra

y

cr
it

ic
al

ai
rl

in
e

ac
co

un
t

pi
ng

po
ng

bb
uf

fe
r

bu
bb

el
so

rt

bu
fw

ri
te

r

m
er

ge
so

rt

ra
yt

ra
ce

r-
s

m
on

te
ca

rl
o-

s

m
ol

dy
n-

s

18

16
14

12
10

8
6

2
0

4

T
im

e
(s

)

FT AC SL+ ML CP

Fig. 3. Number of shared memory accesses.

ar
ra

y

cr
it

ic
al

ai
rl

in
e

ac
co

un
t

pi
ng

po
ng

bb
uf

fe
r

bu
bb

el
so

rt

bu
fw

ri
te

r

m
er

ge
so

rt

ra
yt

ra
ce

r-
s

m
on

te
ca

rl
o-

s

m
ol

dy
n-

s

7

6

5

4

3

1

0

2

of

 a
cc

es
se

s
(1

05)

access events.

SL+ shows the shortest total running time among all four
techniques. The total running time of SL+ is 0.91 times that of
FT. In particular, SL+ provides a shorter running time on
programs that have many threads, or that generate a lot of
explicit and volatile-variable access events, such as bubblesort,
raytracer-s, and moldyn-s.

To analyze the performance correlation between the types of
events (memory access and synchronization events) and the
online detection techniques, we measured the runtime
overhead of these techniques on large-scale benchmark
programs. Because of the very high overhead of ML on jython,
we limited the length of history that ML must maintain for
each thread to 3,000.

Figure 4 illustrates the runtime overhead of the online
detection techniques listed in Table 3. To easily distinguish
the program groups that incur high detection overhead, we
classified the benchmark programs into three categories, as
shown in Fig. 5. Categories 1 is the program group of long-
running programs that generate many shared memory accesses.
Category 2 generates many synchronizations (explicit
synchronizations and volatile-variable access) but generates a
smaller number of shared memory accesses than Category 1.

Fig. 4. Runtime overhead of online dynamic detection techniques
on large-scale benchmark programs.

av
ro

ra

lu
in

de
x

lu
se

ar
ch

su
nf

lo
w

jy
th

on

ra
yt

ra
ce

r

m
on

te
ca

rl
o

m
ol

dy
n

14

12

10

8

6

4

2

0

S
lo

w
do

w
n

(1
02)

FT AC SL+ ML

Fig. 5. Classification of large-scale benchmark programs.

of accesses

Category 2

5 × 108

Category 3

Category 1

of

 E
x-

S
yn

ch
s

+
 v

ol
at

il
e

ac
ce

ss
es

sunflow,
raytracer,
moldyn luindex,

montecarlo

lusearch avrora,
jython

Category 3 includes programs that generate a relatively small
number of shared memory accesses and synchronizations.

As shown in Fig. 4, ML generates the highest runtime
overhead for all of the large-scale benchmark programs. In
particular, ML generates very high overhead (532.6 times
slower than the original program on average) for Category 1
and Category 2. The overhead of ML on jython is more than
1,228.4 times, which is 159.5 times that of FT. FT generates the
lowest amount of runtime overhead, and SL+ and AC are
1.2 times and 1.5 times slower than FT, respectively. In
addition, FT, SL+, and AC generate slightly more overhead for
Category 1 programs, which are long-running programs.

As a result, FT shows the smallest amount of overhead, and
SL+ was shown to be the fastest among the four other dynamic
detection techniques studied.

C. Detection Capability

The detection capability of CP detection is the same as that
for FastTrack in all of the small benchmark programs. On the
small benchmark programs, all of the hybrid detection
techniques (AC, SL+, and ML) additionally detected two

132 Misun Yu et al. ETRI Journal, Volume 39, Number 1, February 2017
https://doi.org/10.4218/etrij.17.0115.1027

Fig. 6. Delay insertion in sunflow.

1: package org.sunflow.core.accel;
2: public class KDTree implements AccelerationStructure {
3: ..
4: public void intersect(Ray r, IntersectionState state) {
5: ..
6: sleep(40);/*delaying thread executions*/
7: primitiveList.intersectPrimitive(r, primitives [offset], state);
8: ..
9: }
10: ..
11:}

potential data races in bufwriter, which were missed by FT. In
addition, SL+ missed two potential data races in mergesort and
raytracer-s, which were detected by AC and ML. We verified
that all these potential data races are true data races that can be
exposed in other thread interleaving sequences.

For the large-scale benchmark programs, the hybrid
detectors reported more data races than FastTrack. Among the
hybrid detectors, AC and ML reported the same data races, and
SL+ missed one in raytracer, which is identical to that missed
by SL+ in raytracer-s. Although AC detected the same data
races as ML on our benchmark programs, AC has the
possibility of additional false positives, which were not
reported by SL+ and ML, as described in Section II.

Except for raytracer, hybrid detectors reported 30 more data
races than FT on large-scale benchmark programs. Among
these data races, we verified that 26 data races in sunflow are
real data races, which can be exposed by delaying thread
accesses to a shared variable during program execution using
the Java sleep() method, as shown in Fig. 6.

Figure 6 shows the part of the sunflow source code that we
used to verify the data races that are reported from hybrid data
races. We detected 31 data races using FT by inserting “sleep
(40)” into delaying thread access to a shared memory location
to which primitiveList is pointing.

V. Conclusion

We presented the performance comparison results of five
recent dynamic data race detection techniques: FastTrack,
Acculock, SimpleLock+, Multilock-HB, and CP detection. We
conducted experiments on the same platform using 12 small
and 8 large-scale benchmark programs. The comparison results
show that CP detection has the highest amount of overhead
among the five detection techniques, although the detection
capability of CP detection does not surpass that of FastTrack on
our benchmarks. SimpleLock+ generated the lowest amount of
runtime overhead among the hybrid detection techniques
(Acculock, SimpleLock+, and Multilock-HB) on all
benchmarks, which is 1.2 times that of FastTrack on average.
Unlike Acculock, SimpleLock+ does not introduce additional

false positives into Multilock-HB, but misses 3.6% of the true
data races reported by Mutilock_HB. Therefore, SimpleLock+
can be a good option for the frequent detection of data races
during the development process, and MultiLock-HB can be
used for the late stages of development for a more thorough
check. We believe that our performance comparison in various
aspects of the program characteristics can provide useful
information for further research to improve the efficiency of
current data race detection techniques.

References

[1] N.G. Leveson and C.S. Turner, “An Investigation of the Therac-

25 Accidents,” Comput., vol. 26, no. 7, July 1993, pp. 18–41.

[2] K. Poulsen, Software Bug Contributed to Blackout, Accessed Dec.

30, 2015. http://www.securityfocus.com/news/8016

[3] R.H.B. Netzer and B.P. Miller, “What Are Race Conditions?:

Some Issues and Formalizations,” Lett. Programming Languages

Syst., vol. 1, no. 1, Mar. 1992, pp. 74–88.

[4] E. Pozniansky and A. Schuster, “Efficient On-the-fly Data Race

Detection in Multithreaded C++ Programs,” Symp. Principles

Practice Parallel Programming, San Diego, CA, USA, June 11–

13, 2003, pp. 179–190.

[5] S. Savage et al., “Eraser: A Dynamic Data Race Detector for

Multithreaded Programs,” Symp. Operating Syst. Principles,

Saint-Malo, France, Oct. 5–8, 1997, pp. 27–37.

[6] D. Marino, M. Musuvathi, and S. Narayanasamy, “LiteRace:

Effective Sampling for Lightweight Data-Race Detection,” Conf.

Programming Language Des. Implementation, Dublin, Ireland,

June 15, 2009, pp. 34–143.

[7] Y. Yu, T. Rodeheffer, and W. Chen, “RaceTrack: Efficient

Detection of Data Race Conditions Via Adaptive Tracking,”

Symp. Operating Syst. Principles, Brighton, UK, Oct, 23–26,

2005, pp. 221–234.

[8] E. Pozniansky and A. Schuster, “MultiRace: Efficient On the Fly

Data Race Detection in Multithreaded C++ Programs,”

Concurrency Comput.: Practice Experience, vol. 19, no. 3, Mar.

2007, pp. 327–340.

[9] C. Flanagan and S.N. Freund, “FastTrack: Efficient and Precise

Dynamic Race Detection,” Conf. Programming Language Des.

Implementation, Dublin, Ireland, June 15–21, 2009, pp. 121–133.

[10] M.D. Bond, K.E. Coons, and K.S. McKinley, “PACER:

Proportional Detection of Data Races,” Conf. Programming

Language Des. Implementation, Toronto, Canada, June 5–10,

2010, pp. 255–268.

[11] K. Zhai et al., “CARISMA: A Context-Sensitive Approach to

Race-Condition Sample-Instance Selection for Multithreaded

Applications,” Int. Symp. Softw. Testing Anal., Minneapolis, MN,

USA, July 15–20, 2012, pp. 221–231.

[12] Y.W. Song and Y.H. Lee, “Efficient Data Race Detection for

ETRI Journal, Volume 39, Number 1, February 2017 Misun Yu et al. 133
https://doi.org/10.4218/etrij.17.0115.1027

C/C++ Programs Using Dynamic Granularity,” Int. Parallel

Distrib. Process. Symp., Phoenix, AZ, USA, May 19–23, 2014,

pp. 679–688.

[13] R. O’Callahan and J.D. Choi, “Hybrid Dynamic Data Race

Detection,” Symp. Principles Practice Parallel Programming,

San Diego, CA, USA, June 11–13, 2003, pp. 167–178.

[14] X. Xie and J. Xue, “Acculock: Accurate and Efficient Detection

of Data Races,” Symp. Code Generation Optimization, Chamonix,

France, Apr. 2–6, 2011, pp. 201–212.

[15] X. Xie, J. Xue, and J. Zhang, “Acculock: Accurate and Efficient

Detection of Data Races,” Softw. Practice Experience, vol. 43, no.

5, May 2013, pp. 543–576.

[16] M.S. Yu and D.H. Bae, “SimpleLock+: Fast and Accurate Hybrid

Data Race Detection,” Comput. J., vol. 59, no. 6, 2016, pp. 793–

809.

[17] Y. Smaragdakis et al., “Sound Predictive Race Detection in

Polynomial Time,” Symp. Principles Programming Languages,

Philadelphia, PA, USA, Jan. 25–27, 2012, pp. 387–400.

[18] J. Huang, P.O. Meredith, and G. Rosu, “Maximal Sound

Predictive Race Detection with Control Flow Abstraction,” Conf.

Programming Language Des. Implementation, Edinburgh,

Ireland, June 9–11, 2014, pp. 337–348.

[19] SPEC JVM98 benchmarks, Accessed Dec. 30, 2015.

http://www.spec.org/osg/jvm98/

[20] L.A. Smith, J.M. Bull, and J. Obdrizalek, “A Parallel Java Grande

Benchmark Suite,” Conf. Supercomput., Denver, CO, USA, Nov.

10–16, 2001, p. 8.

[21] C. Flanagan and S.N. Freund, “The RoadRunner Dynamic

Analysis Framework for Concurrent Programs,” Workshop

Program Anal. Softw. Tools Eng., Toronto, Canada, June 5–6,

2010, pp. 1–8.

[22] S.M. Blackburn et al., “The DaCapo Benchmarks: Java

Benchmarking Development and Analysis,” Conf. Object-

Oriented Programming Syst., Languages, Appli., Portland, OR,

USA, Oct. 22–26, 2006, pp. 169–190.

[23] M. Said et al., “Generating Data Race Witnesses by an SMT-

Based Analysis,” Int. Conf. NASA Formal Methods Symp.,

Pasadena, CA, USA, Apr. 18–20, 2011, pp. 313–327.

[24] C. Flanagan and S.N. Freund, “Type-Based Race Detection for

Java,” Conf. Programming Language Des. Implementation,

Vancouver, Canada, June 18–21, 2000, pp. 219–232.

[25] C. Flanagan and M. Abadi, “Object Types Against Races,” Conf.

Concurrency Theory, Eindhoven, Netherlands, Aug. 24–27, 1999,

pp. 288–303.

[26] C. Boyapati, R. Lee, and M. Rinard, “Ownership Types for Safe

Programming: Preventing Data Races and Deadlocks,” Conf.

Object-Oriented Programming, Syst., Languages, Appli., Seattle,

WA, USA, Nov. 4–8, 2002, pp. 211–230.

[27] C. Boyapati and M. Rinard, “A Parameterized Type System for

Race-Free Java Programs,” Conf. Object-Oriented Programming,

Syst. Languages, Appli, Tampa Bay, FL, USA, Oct. 14–18, 2001,

pp. 56–69.

[28] R.L. Bocchino et al., “A Type and Effect System for

Deterministic Parallel Java,” Conf. Object Oriented

Programming Syst. Languages Appli., Orlando, FL, USA, Oct.

25–29, 2009, pp. 97–116.

[29] A. Greenhouse and J. Boyland, “An Object-Oriented Effects

System,” European Conf. Object-Oriented Programming, Lisbon,

Portugal, June 14–18, 1999, pp. 205–229.

[30] J. Boyland, “The Interdependence of Effects and Uniqueness,”

Workshop Formal Techs. Java Programs, Budapest, Hungary,

June 18, 2001.

[31] C. Von Praun and T.R. Gross, “Static Conflict Analysis for Multi-

threaded Object-Oriented Programs,” Conf. Programming

Language Des. Implementation, San Diego, CA, USA, June 8–11,

2003, pp. 115–128.

[32] M. Naik, A. Aiken, and J. Whaley, “Effective Static Race

Detection for Java,” Conf. Programming Language Des.

Implementation, Ottawa, Canada, June 10–16, 2006, pp. 308–319.

[33] M. Naik and A. Aiken, “Conditional Must Not Aliasing for Static

Race Detection,” Symp. Principles Programming Languages,

Nice, France, Jan. 17–19, 2007, pp. 327–338.

[34] C. Radoi and D. Dig, “Practical Static Race Detection for Java

Parallel Loops,” Int. Symp. Softw. Testing Anal., Lugano,

Switzerland, July 15–20, 2013, pp. 178–190.

[35] Y. Lin and D. Dig, “A Study and Toolkit of CHECK-THEN-

ACT Idioms of Java Concurrent Collections,” Softw. Testing,

Verification Rel., vol. 25, no. 4, June 2015, pp. 397–425.

[36] J. Wilcox et al., “Array Shadow State Compression for Precise

Dynamic Race Detection,” Conf. Automated Softw. Eng., Lincoln,

NE, USA, Nov. 9–13, 2015, pp. 155–165.

[37] B.P. Wood, L. Ceze, and D. Grossman, “Low-Level Detection of

Language-Level Data Races with LARD,” Conf. Archit. Support

Programming Languages Operating Syst., Salt Lake, Canada,

Mar. 1–5, 2014, pp. 671–686.

134 Misun Yu et al. ETRI Journal, Volume 39, Number 1, February 2017
https://doi.org/10.4218/etrij.17.0115.1027

Misun Yu is a senior researcher at the

Embedded Software Research Department at

ETRI, Daejeon, Rep. of Korea. She received her

MS degree from the Department of Computer

Science and Engineering at Pohang University

of Science and Technology, Rep. of Korea. Her

main research interests include concurrent

program analysis, software testing, and cyber-physical systems.

Seung-Min Park is a principal member of the

engineering staff in Embedded Software

Research Department at the ETRI. He received

his MS degree from Hongik University, Seoul,

Rep. of Korea in 1983. His research interests

include embedded software, cyber-physical

Systems, autonomic computing, and live-

virtual-constructive technologies.

Ingeol Chun is the director of the CPS research

section at ETRI and an adjunct professor at the

University of Science & Technology, Daejeon,

Rep. of Korea. He received his PhD and MS

degrees in Electrical and Computer Engineering

from Sungkyunkwan University, Suwon, Rep.

of Korea. His research interests are cyber-

physical systems, smart factories, autonomic computing systems,

embedded systems, and software engineering.

Doo-Hwan Bae is a professor in the School of

Computing at the Korea Advanced Institute of

Science and Technology, Daejeon, Rep. of

Korea. He received his PhD from the

Department of Computer Science at the

University of Florida Gainesville, USA. He

currently leads many projects funded by the

Korean government and industry. His research interests include

software safety, software testing, quality-driven software development,

embedded software design, and mining software repositories.

