• Title/Summary/Keyword: Design live loads

Search Result 85, Processing Time 0.023 seconds

Probabilistic Analysis of Design Live Loads on A Refrigeration Store (냉동 창고 상시 적재하중에 관한 확률론적 연구)

  • Kim, Dai-Ho;Jeong, Jae-Hun;Won, Young-SuI;Joo, Kyung-Jai
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.109-120
    • /
    • 2001
  • Live load data were collected with a systematic manner from a survey of a refrigeration stores. Using the collected floor live load survey data, the basic statistics, a histogram of the uniformly distributed loads, and the equivalent uniformly distributed loads are computed for various structural members. Based on the above results, the maximum values of a combined live loads during the design life have been estimated and compared with current design live loads. The ultimate goals of this study are to develop probabilistic live load models to analyze survey data of domestic refrigeration stores, and to propose design live loads for structural types.

  • PDF

Study on Location-Specific Live Load Model for Verification of Bridge Reliability Based on Probabilistic Approach (교량의 신뢰성 검증을 위한 지역적 활하중 확률모형 구축)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.16 no.2
    • /
    • pp.90-97
    • /
    • 2016
  • Purpose: Majority of bridges and roads in Gangwon Province have been carrying loads associated with heavy materials such as rocks, mining products, and cement. This location-specific live loads have contributed to the present situation of overloading, compared to other provinces in Korea. However, the bridges in Gangwon province are designed by national bridge design specification, without considering the location-specific live load characteristics. Therefore, this study focuses on the real traffic data accumulated on regional weighing station to verify the live load characteristics, including actual live load gross vehicle weight, axle weight axle spacings, and number of trucks. Methods: In order to take into account the location specific live load, a governmental weigh station (38th national highway Miro) have been selected and the passing truck data are processed. Based on the truck survey, trucks are categorized into 3 different shapes, and each shape has been idealized into normal distribution. Then, the resulting survey data are processed to predict the target maximum live load values, including the axle loads and gross vehicle weights in 75 years service life span. Results: The results are compared to the nationally used DB-24 live loads, and the results show that nationally recognized DB-24 live load does not sufficiently represent real traffic in mountaineous region in Gangwon province. Conclusion: The comparison results in the recommendation of location-specific live load that should be taken into account for bridge design and evaluation.

An Improved Stability Design of Steel Cable-Stayed Bridges using Second-Order Effect (2차효과를 고려한 강사장교의 개선된 좌굴해석)

  • Kyung Yong-Soo;Kim Nam-Il;Lee Jun-Sok;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.993-1000
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.

  • PDF

Probabilistic Analysis of Lifetime Extreme Live Loads of Multi-Story Columns (고층기둥 축하중의 사용기간 최대값에 대한 확률론적 분석)

  • 김상효;박흥석
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.113-118
    • /
    • 1992
  • The live loads acting on structures are generally computed in terms of equivalent uniformly distributed loads for the simplicity in design process. The loads, therefore, tend to decrease with increasing influence area in both load intensity and variance. Since multi-story column loads result from accumulation of loadings action on several different floors, its influence area becomes wider and lifetime maximum decreases. In the design codes proposing the design loads according to types of structural members(i.e., slabs, beams, columns), rather than the change of influence area, some proper reduction factors are given for columns which support more than one floor. Using the live load models developed for columns supporting single floor, in this study, the probabilistic characteristics of multi-story column loads are analyzed. In addition reduction factors given for multistory columns in current practice are calibrated.

  • PDF

Probabilistic Analysis of Lifetime Extreme Live toads of Multi-Story Columns (고층기둥 축하중의 사용기간 최대값 분석)

  • 김상효;조형근;배규웅;박홍석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.69-72
    • /
    • 1990
  • The live loads acting on structures are generally computed in terms of equivalent uniformly distributed loads for the simplicity in design process. The loads, therefore, tend to decrease with increasing influence area in both load intensity and variance. Since multi-story column loads result from accumulation of loadings acting on several different floors, its influence area becomes wider and lifetime maximum decreases. In the design codes proposing the design loads for types of structural members (i.e., slabs, beams, columns), not for tile change of influence area, some proper reduction factors are given for columns which support more than one floor. Using the live load models developed for colons supporting single floor, in this study, the probabilistic characteristics of multi-story column loads are analyzed. In addition reduction factors given for multi-story columns in current practice are calibrated.

  • PDF

Probabilistic Analysis of Lifetime Extreme Live Loads in Office Buildings (사무실의 사용기간 최대 적재하중에 대한 확률론적 분석)

  • 김상효;조형근;배규웅;박흥석
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.109-116
    • /
    • 1990
  • Live load data in domestic office buildings have been collected in a systematic manner. Based on surveyed data, equivalent uniformly distributed load intensities, which produce the same load effect as the actual spatially varying, live load, have been obtained for various structural members (such as slab, beam, column, etc. ). Influence surface method has been employed to compute load effects under real live load, including beam moment, slab moment as well as axial force in column. The results have been examined to find probabilistic characteristics and relationship between influence area and load intensity (or coefficient of variation). The results were also compared with other survey results and found to be reasonable. Based on the probabilistic load models obtained, the lifetime extreme values have been analyzed and compared with current design loads. Tentative equations applicable to decide more rational design loads are also suggested as functions of influence area.

  • PDF

Numerical analysis of steel-soil composite (SSC) culvert under static loads

  • Beben, Damian;Wrzeciono, Michal
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2017
  • The paper presents a numerical analysis of a steel-soil composite (SSC) culvert in the scope of static (dead and live) loads. The Abaqus program based on the finite element method (FEM) was used for calculations. Maximum displacements were obtained in the shell crown, and the largest stresses in the haunches. Calculation results were compared with the experimental ones and previous calculations obtained from the Autodesk Robot Structural Analysis (ARSA) program. The shapes of calculated displacements and stresses are similar to those obtained with the experiment, but the absolute values were generally higher than measured ones. The relative differences of calculated and measured values were in the range of 5-23% for displacements, and 15-42% for stresses. Developed calculation model of the SSC culvert in the Abaqus program allows obtaining reasonable values of internal forces in the culvert. Using both calculation programs, the relative differences for displacements were in the range of 15-39%, and 17-44% for stresses in favour of the Abaqus program. Three design methods (Sundquist-Pettersson, Duncan and CHBDC) were used to calculate the axial thrusts and bending moments. Obtained values were compared with test results. Generally, the design methods have conservative assumptions, especially in the live loads distribution, safety factors and consideration the interaction between soil and steel structure.

Equivalent Distributed Loads of HL Loading for Design of the Rahmen Bridges (라멘교 설계를 위한 HL 열차하중의 등치분포하중)

  • 진치섭;한상중;이홍주;김희성;조상제
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.207-212
    • /
    • 1993
  • Rail carrying structures in international routes as well as domestic ones shall be designed to carry HL(High Speed Railway live Load) loads, The loads shall be placed in the most unfavourable position for the part of the structure in question. In general, influence lines may be used to determine the maximum bending moments and maximum shear forces in the reinforced concrete rahmen bridge structures. In this study, based on the finite element analysis, equivalent distributed loads of HL loading for design of the rahmen bridges are deterimined.

  • PDF

Probabilistic Analysis of Equivalent Uniformly Distributed live toads (등가등분포 적재하중의 확률론적 분석)

  • 김상효;정시현;조형근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.04a
    • /
    • pp.1-4
    • /
    • 1989
  • Since 1960's, structural engineers have recognized that tile inherent random nature of loadings and materials as well as the imperfect structural analysis may be important factors in tile structural safety evaluation. Based on the successful developments of the reliability based structural analysis and design, the design criteria of tile standards are recently developed(or modified) in the light of the probabilistic concepts. To develop the probability-based design criteria for tile domestic buildings, the probabilistic characters of loadings acting on structures should be defined first. In this study, therefore, live load data on apartment buildings have collected and analyzed in a systematic manner, and their probabilistic characteristics have been studied. Based oil the results, the lifetime extreme values are computed and compared with current design loads. More rational design loads are suggested, which are more consistent in the probabilistic concepts.

  • PDF

An Improved Stability Design of Cable-Stayed Bridges using System Buckling and Second-Order Elastic Analysis (활하중의 영향을 고려한 시스템 좌굴해석 및 2차 탄성해석을 이용한 사장교의 개선된 좌굴설계)

  • Kyung, Yong Soo;Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.485-496
    • /
    • 2006
  • Practical stability design method of main members of cable-stayed bridges is proposed and discussed through a design example. For this purpose, initial tensions of stay cables and axial forces of main members are firstly determined using initial shaping analysis of bridges under dead loads. And then the effective buckling length using system elastic/inelastic buckling analysis and bending moments considering $P-{\delta}-{\Delta}$ effect by second-order elastic analysis are calculated for main girder and pylon members subjected to both axial forces and moments, respectively. Particularly, three load combinations of dead and live loads, in which maximum load effects due to live loads are obtained, are taken into account and effects of live loads on effective buckling lengths are investigated.