• Title/Summary/Keyword: Design Matrix

Search Result 2,413, Processing Time 0.032 seconds

A General Design Method of Constructing Fully Homomorphic Encryption with Ciphertext Matrix

  • Song, Xinxia;Chen, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2629-2650
    • /
    • 2019
  • It is important to construct fully homomorphic encryption with ciphertext matrix that makes fully homomorphic encryption become very nature and simple. We present a general design method of constructing fully homomorphic encryption whose ciphertext is matrix. By using this design method, we can deduce a fully homomorphic encryption scheme step by step based on a basic encryption scheme. The process of deduction is similar to solving equation and the final output result is a fully homomorphic encryption scheme with ciphertext matrix. The idea of constructing ciphertext matrix is ciphertexts stack, which don't simply stack ciphertexts together but is to obtain the desired homomorphic property. We use decryption structure as tool to analyze homomorphic property and noise growth during homomorphic evaluation. By using this design method, we obtain three corresponding fully homomorphic encryption schemes. Our obtained fully homomorphic encryption schemes are more efficient. Finally, we introduce the adversary advantage and improve the previous method of estimating concert parameters of fully homomorphic encryption. We give the concert parameters of these schemes.

A Parallel-Architecture Processor Design for the Fast Multiplication of Homogeneous Transformation Matrices (Homogeneous Transformation Matrix의 곱셈을 위한 병렬구조 프로세서의 설계)

  • Kwon Do-All;Chung Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.723-731
    • /
    • 2005
  • The $4{\times}4$ homogeneous transformation matrix is a compact representation of orientation and position of an object in robotics and computer graphics. A coordinate transformation is accomplished through the successive multiplications of homogeneous matrices, each of which represents the orientation and position of each corresponding link. Thus, for real time control applications in robotics or animation in computer graphics, the fast multiplication of homogeneous matrices is quite demanding. In this paper, a parallel-architecture vector processor is designed for this purpose. The processor has several key features. For the accuracy of computation for real application, the operands of the processors are floating point numbers based on the IEEE Standard 754. For the parallelism and reduction of hardware redundancy, the processor takes column vectors of homogeneous matrices as multiplication unit. To further improve the throughput, the processor structure and its control is based on a pipe-lined structure. Since the designed processor can be used as a special purpose coprocessor in robotics and computer graphics, additionally to special matrix/matrix or matrix/vector multiplication, several other useful instructions for various transformation algorithms are included for wide application of the new design. The suggested instruction set will serve as standard in future processor design for Robotics and Computer Graphics. The design is verified using FPGA implementation. Also a comparative performance improvement of the proposed design is studied compared to a uni-processor approach for possibilities of its real time application.

Qualitative Representation of Spatial Configuration of Mechanisms and Spatial Behavior Reasoning Using Sign Algebra (메커니즘 공간 배치의 정성적 표현과 부호 대수를 이용한 공간 거동 추론)

  • 한영현;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.380-392
    • /
    • 2000
  • This paper proposes a qualitative reasoning approach for the spatial configuration of mechanisms that could be applied in the early phase of the conceptual design. The spatial configuration problem addressed in this paper involves the relative direction and position between the input and output motion, and the orientation of the constituent primitive mechanisms of a mechanism. The knowledge of spatial configuration of a primitive mechanism is represented in a matrix form called spatial configuration matrix. This matrix provides a compact and convenient representation scheme for the spatial knowledge, and facilitates the manipulation of the relevant spatial knowledge. Using this spatial knowledge of the constituent primitive mechanisms, the overall configuration of a mechanism is described and identified by a spatial configuration state matrix. This matrix is obtained by using a qualitative reasoning method based on sign algebra and is used to represent the qualitative behavior of the mechanism. The matrix-based representation scheme allows handling the involved spatial knowledge simultaneously and the proposed reasoning method enables the designer to predict the spatial behavior of a mechanism without knowing specific dimension of the components of the mechanism.

  • PDF

An Anthropometric Product Design Approach Using Design Structure Matrix (DSM): Application to Computer Workstation Design (Design Structure Matrix를 활용한 인체측정학적 제품설계 방법: 컴퓨터 워크스테이션 설계 적용)

  • Jung, Ki-Hyo;Kwon, O-Chae;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.111-115
    • /
    • 2007
  • Design equations for anthropometric product design are developed by considering the geometrical relationships of design dimensions and anthropometric dimensions. The present study applied the design structure matrix (DSM) method to the development of design equations for a computer workstation, and compared design values from the design equations with corresponding design values of ergonomic recommendations and existing products. The relationships between design dimensions (e.g., legroom and worktable) were analyzed by a DSM, and then the application order of design equations (e.g., seatpan, backrest, armrest, legroom, and worktable in descending order) was determined. Next, design equations were developed by analyzing the geometric relationships between computer workstation design dimensions and anthropometric dimensions. Finally, design values for a computer workstation were determined by considering a standard posture defined and representative human models (5th, 50th, 95th %ile). The design values calculated using the design equations were similar with those of ergonomic recommendations found in literature and two commercial products measured in the study; however, some design values (e.g., seatpan height) were different due to discrepancy in standard posture. The DSM method would be utilized to systematically analyze the relationships between design dimensions for anthropometric product design.

Application to the design of reduced-order robust MPC and MIMO identification

  • Lee, Kwang-Soon;Kim, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.313-316
    • /
    • 1997
  • Two different issues, design of reduced-order robust model predictive control and input signal design for identification of a MIMO system, are addressed and design techniques based on singular value decomposition(SVD) of the pulse response circulant matrix(PRCM) are proposed. For this, we investigate the properties of the PRCM, which is a periodic approximation of a linear discrete-time system, and show its SVD represents the directional as well as the frequency decomposition of the system. Usefulness of the PRCM and effectiveness of the proposed design techniques are demonstrated through numerical examples.

  • PDF

Microstrip EHF Butler Matrix Design and Realization

  • Neron, Jean-Sebastien;Delisle, Gilles-Y.
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.788-797
    • /
    • 2005
  • This paper describes the design and realization of an extra high frequency band $8{\times}8$ microstrip Butler matrix. Operation at 36 GHz is achieved with a frequency bandwidth exceeding 400 MHz. The circuit is implemented on a bi-layer microstrip structure using conventional manufacturing processes. This planar implementation of a Butler matrix is a key component of a switched beam smart antenna with printed antenna elements integrated on-board. Conception details, simulation results, and measurements are also given for the components (hybrid couplers, cross-couplers, and vertical inter-connections) used to implement the matrix.

  • PDF

Application of Systems Engineering based Design Structure Matrix Methodology for Optimizing the Concept Design Process of Naval Ship (함정 개념설계 프로세스 최적화를 위한 시스템엔지니어링 기반의 설계구조행렬 방법론 적용)

  • Park, Jinwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Naval ship design and related other activities can be characterized by the complexity of the interactions among products, activities, and disciplines. Such complexities often result in inferior designs, cost overrun, and late-delivery. Hence there exist tremendous interests in both improving the design process itself and optimizing the interactions among design activities. This paper looks at the complexity of designing naval ships thereby leading to the innovation of current ship design practices using design structure matrix. It can be used to induce the optimal ordering of design activities as well as identify sources of complexities. The method presented here identifies coupled design activities useful for reducing the complexity of naval ship design as well as optimally reordering design activities. This paper recommends the use of design structure matrix method suitable for numerically optimizing the concept design process of naval ship, and reducing cost and time required in designing naval ships by modeling and analyzing the design activities and engineering tasks, defined in systems engineering planning documents.

Applications of Block Pulse Response Circulant Matrix and its Singular Value Decomposition to MIMO Control and Identification

  • Lee, Kwang-Soon;Won, Wan-Gyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.508-514
    • /
    • 2007
  • Properties and potential applications of the block pulse response circulant matrix (PRCM) and its singular value decomposition (SVD) are investigated in relation to MIMO control and identification. The SVD of the PRCM is found to provide complete directional as well as frequency decomposition of a MIMO system in a real matrix form. Three examples were considered: design of MIMO FIR controller, design of robust reduced-order model predictive controller, and input design for MIMO identification. The examples manifested the effectiveness and usefulness of the PRCM in the design of MIMO control and identification. irculant matrix, SVD, MIMO control, identification.

A study on controller design based on safe Petri Net for discrite system control (비연속시스템제어를 위한 Safe Petri Net에 기초로한 제어기의 구성에 관한 연구)

  • 황창선;이재민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.400-405
    • /
    • 1990
  • This paper deals with the design technique of the controller for the discrete system control using Extended Safe Petri Net which is deduced from Petri Net as its subclass with a specific constraint and which is introduced to develop the design and analysis for the discrete systems. First, we propose a construction matrix suitable for the discrete systems that represent the marking flows which are the dynamic behavior of the discrete systems. Next, we develop a method that can design the controller for the discrete system control by analyzing the proposed construction matrix into the incidence matrix of Extended Safe Petri Net. Finally, the validity of the proposed method is shown by using the incidence matrix and matrix equation of Extended Safe Petri Net model.

  • PDF

Unified Parametric Approaches for Observer Design in Matrix Second-order Linear Systems

  • Wu Yun-Li;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.159-165
    • /
    • 2005
  • This paper designs observers for matrix second-order linear systems on the basis of generalized eigenstructure assignment via unified parametric approach. It is shown that the problem is closely related with a type of so-called generalized matrix second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass system is utilized to show the effect of the proposed approaches.