• Title/Summary/Keyword: Design소자천

Search Result 20, Processing Time 0.023 seconds

Optical System Design for CCTV Camera (CCTV 카메라용 광학계 설계)

  • Lee, Soo Cheon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • Purpose: This study is to design a triplet optical system for CCTV camera lens. Methods: It was a telescopic lens with $5^{\circ}$ field angle, 56 mm focal length, 20 mm diameter, and 2/3 inches sized CCD array detector. Results: The performance of the subject optical system was evaluated by applying ray fan, spot diagram, and diffraction optical MTF. The wavelength was achromatized at Fraunhofer C, d and F-line, and both MTF and tangential & sagittal MTF shows more than 70% at spatial frequency of 50 linepairs/mm. Conclusions: The marketable triplet optical system for CCTV camera was designed and its utility was considered.

  • PDF

SSD(Simultaneous Single Band Duplex) System Using RF Cancellation and Digital Cancellation (RF Cancellation과 Digital Cancellation을 사용한 SSD(Simultaneous Single Band Duplex) 시스템)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.100-108
    • /
    • 2014
  • In this paper, we design SSD(simultaneous single band duplex) system using RF(radio frequency) cancellation and digital cancellation. we analyze characteristic of residual self-interference after RF Cancellation signal when error of phase shifter occur in RF cancellation. When phase shifter error of $0^{\circ}$, $0.5^{\circ}$, $1^{\circ}$ and $2^{\circ}$ occur in RF cancellation, residual self-interference signal power after RF cancellation is bigger than desired signal power of distant station. So, it is impossible to receive transmit data of distant station. but we confirm that it is possible to receive transmit data of distant station by digital cancellation with frame structure. Also, in digital cancellation with frame structure, if residual self-interference signal after RF cancellation is too large then LMS algorithm requires more time to estimate self-interference channel. That is, performance degradation occurs because self-interference channel estimation has not completed in estimation frame.

Design of Antenna for Beam Scanning for Dual-Band base station (이중대역 기지국용 빔 스캔 안테나 설계)

  • Ko Jin-Hyun;Jang Jae-Su;Ha Jae-Kwon;Park Sae-Houn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.632-636
    • /
    • 2006
  • It is needed to use the beam scanning to control the cell coverage of the base station considering operation conditions, season, time period, radiation character and mobility of customers and vehicles for varied wireless communication service and quality improvement. This paper proposes a mobile antenna system which can obtain the characteristics of the beam scanning by controlling the directivity depending on the operation condition. Radiation block is made of 2 sub-array of $1\times3$ patched antennas for ITS of 5.8GHZ bandwidth with the gain of 13dBi, and of 2 sub-array of single patched antenna for WiBro of 2.3GHZ bandwidth with the gain of 12dBi. RF module is made of a switch, an amplifier, a PAD, a 3-Bit phase shifter, and a power divider. The system is able to control the beam tilting with electronic methode by using 3-bit phase shifter$(45^{\circ},\;90^{\circ},\;180^{\circ})$.

  • PDF

Development of an FMCW Radar Altimeter Simulator Using Optical Delay Lines (광 지연선을 이용한 FMCW 전파고도계 시뮬레이터 개발)

  • Lee, Jae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.208-216
    • /
    • 2017
  • This paper presents the design method of an FMCW(frequency-modulated continuous-wave) altitude simulator which generates propagation delay signals according to target distances to test the radar altimeter. To improve the conventional RF method for creating delay signals, the simulator is designed by the RF-optics-RF method using optical delay lines. In addition, it is designed to simulate the Doppler shift and jamming that may occur in actual flight environment. In order to evaluate the performance of the developed simulator, the integration tests have been conducted with the radar altimeter. Through the test, we successfully verified the performance of the simulator.

A New Soft-switched PWM Boost Converter with a Lossless Auxiliary Circuit (스위칭 손실 없는 보조회로를 이용한 고효율 부우스트 컨버터 설계)

  • Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.149-158
    • /
    • 2006
  • A soft-switching scheme for the PWM boost converter, ZCT (Zero current transition : ZCT) boost converter Is newly proposed to obtain the desirable features of both the conventional BWM boost and resonant converters such as easy of control, reduced switching losses and stresses, an4 low EMI. In order to achieve the soft-switching action, the proposed scheme employs an auxiliary circuit, which is added to the conventional boost converter and used to achieve soft-switching for both the main switch and the output diode while not incurring any additional losses due to auxiliary circuit itself. The basic operations, in this paper, we discussed and design guidelines are presented. Through a 100kHz, 60-W prototype, the usefulness of the proposed scheme is verified.

Design of pHEMT channel structure for single-pole-double-throw MMIC switches (SPDT 단일고주파집적회로 스위치용 pHEMT 채널구조 설계)

  • Mun Jae Kyoung;Lim Jong Won;Jang Woo Jin;Ji, Hong Gu;Ahn Ho Kyun;Kim Hae Cheon;Park Chong Ook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.207-214
    • /
    • 2005
  • This paper presents a channel structure for promising high performance pseudomorphic high electron mobility transistor(pHEMT) switching device for design and fabricating of microwave control circuits, such as switches, phase shifters, attenuators, limiters, for application in personal mobile communication systems. Using the designed epitaxial channel layer structure and ETRI's $0.5\mu$m pHEMT switch process, single pole double throw (SPDT) Tx/Rx monolithic microwave integrated circuit (MMIC) switch was fabricated for 2.4 GHz and 5 GHz band wireless local area network (WLAN) systems. The SPDT switch exhibits a low insertion loss of 0.849 dB, high isolation of 32.638 dB, return loss of 11.006 dB, power transfer capability of 25dBm, and 3rd order intercept point of 42dBm at frequency of 5.8GHz and control voltage of 0/-3V These performances are enough for an application to 5 GHz band WLAN systems.

Design of VCO(Voltage Controlled Oscillator) for mobile communication with a built-in voltage regulator (전압 레귤레이터를 내장한 이동통신용 VCO(Voltage Controlled Oscillator) 설계)

  • Cho, Hyon-mook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.76-84
    • /
    • 1997
  • In this paper, one of the core components of a mobile communication system, VCO(Voltage Controlled Oscillator) IC is designed. The VCO IC was designed, have realized as LC turned oscillator using varicap. LC sinusoidal tuned oscillator generally requires external inductors and thus remainding circuit is implemneted in monolithic IC. The circuit is fabricated using an 15 mask IC process and has a die size of 1150um${\times}$780um. The tests showed that VCO was operated at frequencies in the regions between 880MHz-915MHz in the control voltage range of 1V to 3V at 5V supply voltage and as the power supply was varied from 4.5V to 5.5V, the frequency varied 425KHz/V. The VCO IC has frequency shift of 1.97MHz/T, carrier level of -7dBm and power consumption of 16.7mA. Also it has phase noise of -80dBc/Hz, offset at 50KHz and harmonic response of center frequency is -41dBm. For the future development of the transceiver 1 chip, the previously mentioned external devices need to be incorporated into Si MMIC.

  • PDF

Design of a 2-Port Frequency Mixer for Active Retrodirective Array Applications (역지향성 능동배열 안테나용 2-Port 주파수 혼합기의 설계)

  • Chun Joong-Chang;Kim Tae-Soo;Kim Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.397-401
    • /
    • 2005
  • In this paper, we have developed a frequency mixer which can be used as a microwave phase conjugator in the retrodirective array antenna. The retrodirective array, which can reflect the incident wave retrodirertively back to the source direction without any priori information, requires phase conjugators to achieve the phase change of 180 degrees for the incoming signal. frequency mixers can efficiently serve as phase conjugators. The circuit topology is of the 2-port structure to avoid the complexity of LO and Rf signal combination and matching circuits, using a pseudomorphic HEU device. The operating frequencies are 4.0 CHz, 2.01 CHz, and 1.99 CHz for LO, RF, and If signals, respectively. Conversion loss is measured to be -ldB and 1-dB compression point -l5 dBm at the LO power of -10 dBm.

A study on the wire reduction design and effect analysis for the train vehicle line (철도차량 배선절감 방안 및 효과분석에 관한 연구)

  • Lee, Kangmi;Kim, Seong Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.711-717
    • /
    • 2017
  • The railway is a public transportation system that provides large-scale passenger transportation and service, whose reliability and safety is the top priority. The wiring of railway vehicles is classified into train control lines (train lines) and communication lines. The train lines are used for input / output signals related to vehicle driving and safety functions, and the communication lines are used for the input / output signals for passenger services such as broadcasting. In order to measure the reliability of railway vehicles, a train line is applied to the input / output interface of the control signals between the electric control devices in the vehicle, and there are many electromechanical devices such as relays and contactors for the control logic. In fact, since the vehicle control circuit is composed of several thousand contacts, it is difficult to check for errors such as contact failure, and it is impossible to check the real-time status, so a lot of manpower and time is required for regular maintenance. Therefore, we analyze the current state of the train line design of the electric equipment used for driving and services in domestic railway cars and propose three wiring reduction methods to improve it. Based on the analysis of domestic electric vehicles, it was confirmed that the wiring reduction effect is 35% or more.

Broadband LTCC Receiver Module for Fixed Communication in 40 GHz Band (40 GHz 대역 고정통신용 광대역 LTCC 수신기 모듈)

  • Kim Bong-Su;Kim Kwang-Seon;Eun Ki-Chan;Byun Woo-Jin;Song Myung-Sun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1050-1058
    • /
    • 2005
  • This paper presents how to design and implement a very compact, cost effective and broad band receiver module for IEEE 802.16 FWA(Fixed Wireless Access) in the 40 GHz band. The presented receiver module is fabricated in a multi-layer LTCC(Low Temperature Cofired Ceramic) technology with cavity process to achieve excellent electrical performances. The receiver consists of two MMICs, low noise amplifier and sub-harmonic mixer, an embedded image rejection filter and an IF amplifier. CB-CPW, stripline, several bond wires and various transitions to connect each element are optimally designed to keep transmission loss low and module compact in size. The LTCC is composed of 6 layers of Dupont DP-943 with relative permittivity of 7.1. The thickness of each layer is 100 um. The implemented module is $20{\times}7.5{\times}1.5\;mm^3$ in size and shows an overall noise figure of 4.8 dB, an overall down conversion gain of 19.83 dB, input P1 dB of -22.8 dBm and image rejection value of 36.6 dBc. Furthermore, experimental results demonstrate that the receiver module is suitable for detection of Digital TV signal transmitted after up-conversion of $560\~590\;MHz$ band to 40 GHz.