• Title/Summary/Keyword: Descriptor system$H_{INFTY}$ control

Search Result 10, Processing Time 0.029 seconds

Descriptor and Non-Descriptor Controllers in Mixed $H_2/H_{\infty}$ Control of Descriptor Systems

  • Choe, Yeon-Wook;Ahn, Young-Ju
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.892-897
    • /
    • 2003
  • This paper considers the design of mixed $H_2/\;H_{\infty}$ controllers for linear time-invariant descriptor systems. Firstly, an $H_{\infty}$ and $H_2$ synthesis problem for a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, the existence of a mixed $H_2/\;H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_{\infty}$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables. In addition, we show the procedure by which a obtained descriptor controller can be transformed to a non-descriptor one.

  • PDF

Mixed $H_{2}/H_{\infty}$ Controller Design for Descriptor Systems (디스크립터 시스템을 위한 혼합 $H_{2}/H_{\infty}$제어기의 설계)

  • Choe, Yeon-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.483-490
    • /
    • 2004
  • The descriptor system model has a high ability in representing dynamical systems. It can preserve physical parameters in the coefficient matrices, and describe the dynamic part, static part, and even the improper part of the system in the same form. The design of mixed $H_{2}/H_{\infty}$ controllers for linear time-invariant descriptor systems is considered in this paper. Firstly, an $H_2$ and $H_{\infty}$ synthesis problems fur a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, we show that the existence of a mixed $H_2/H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_2$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables.

Fixed-Order $H_{\infty}$ Controller Design for Descriptor Systems

  • Zhai, Guisheng;Yoshida, Masaharu;Koyama, Naoki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.898-902
    • /
    • 2003
  • For linear descriptor systems, we consider the $H_{INFTY}$ controller design problem via output feedback. Both static output feedback and dynamic one are discussed. First, in the case of static output feedback, we reduce our control problem to solving a bilinear matrix inequality (BMI) with respect to the controller coefficient matrix, a Lyapunov matrix and a matrix related to the descriptor matrix. Under a matching condition between the descriptor matrix and the measured output matrix (or the control input matrix), we propose setting the Lyapunov matrix in the BMI as being block diagonal appropriately so that the BMI is reduced to LMIs. For fixed-order dynamic $H_{INFTY}$ output feedback, we formulate the control problem equivalently as the one of static output feedback design, and thus the same approach can be applied.

  • PDF

Riccati Equation Approach to $\textrm{H}_\infty$ Robust Performance Problem for Descriptor Form System

  • Shen, Tielong;Tamura, Katsutoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.95-99
    • /
    • 1993
  • In this paper, we discuss H$_{\infty}$ robust performance problem for uncertain system described in a descriptor form. We show that the method based on Riccati equation can be extended to solve this problem. First, such a sufficient condition is given that the system described in a descriptor form is quadratic stable and H$_{\infty}$ norm of a specified transfer function is less than a given level. Using this result, a state feedback law which ensures H$_{\infty}$ robust performance of closed loop system is derived based on a positive definite solution of a Riccati equation. This result shows that a solution of the problem can be also obtained by solving H$_{\infty}$ standard problem for an extended plant. Finally, a design example and simulation results will be given.ven.

  • PDF

An Improvement on Robust $H{\infty}$ Control for Uncertain Continuous-Time Descriptor Systems

  • Lee Hung-Jen;Kau Shih-Wei;Liu Yung-Sheng;Fang Chun-Hsiung;Chen Jian-Liung;Tsai Ming-Hung;Lee Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.271-280
    • /
    • 2006
  • This paper proposes a new approach to solve robust $H{\infty}$ control problems for uncertain continuous-time descriptor systems. Necessary and sufficient conditions for robust $H{\infty}$ control analysis and design are derived and expressed in terms of a set of LMIs. In the proposed approach, the uncertainties are allowed to appear in all system matrices. Furthermore, a couple of assumptions that are required in earlier design methods are not needed anymore in the present one. The derived conditions also include several interesting results existing in the literature as special cases.

Disturbance-Observer-Based Robust H Switching Tracking Control for Near Space Interceptor

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.153-162
    • /
    • 2014
  • A novel robust $H_{\infty}$ switching tracking control design method with disturbance observer is proposed for the near space interceptor (NSI) with aerodynamic fins and reaction jets. Initially, the flight envelop of the NSI is divided into small subregions, and a slow-fast loop polytopic linear parameter varying (LPV) model is proposed, to approximate the nonlinear dynamic of the NSI, based on the Jacobian linearization and Tensor-Product (T-P) model transformation approach. A disturbance observer is then constructed, to estimate the modeled disturbance. Subsequently, based on the descriptor system method, a robust switching controller is developed, to ensure that the closed-loop descriptor system is stable with a desired $H_{\infty}$ disturbance attenuation level. Furthermore, the outcome of the proposed switching tracking control problem is formulated as a set of linear matrix inequalities (LMIs). Finally, simulation results demonstrate the effectiveness of the proposed design method.

A Robust Controller Design for the Position Control of a Spring-Mass System (탄성-질량시스템의 위치제어를 위한 강건 제어기 설계)

  • 박종우;이상철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.41-49
    • /
    • 1999
  • In this paper, we design a controller using the $\mu$-synthesis method and apply it for the spring-mass system with noncollocated sensors and actuators. We assume that the values of the spring stiffness and load mass of the plant are uncertain. The plant is modeled with parametric uncertainty by using the state space equation, especially the descriptor form. The $H_\infty$ controller designed by the $\mu$-synthesis method is compared with the standard $H_\infty$ controller To compare performances of two $H_\infty$ controllers, it is assumed that both controllers were designed with same weighting functions except that the $\mu$-synthesis controller has structured uncertainties. By compared with the standard $H_\infty$ controller, we show that the designed controller has satisfactory robust performance as well as robust stability by simulations and experiments.

  • PDF

Optimal Structural Design for Flexible Space Structure with Control System Based on LMI

  • Park, Jung-Hyen;Cho, Kyeum-Rae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.75-82
    • /
    • 2002
  • A simultaneous optimal design problem of structural and control systems is discussed by taking a 3-D truss structure as an object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these forms. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The structural objective function is the structural weight and the control objective function is $H_{\infty}$ norm from the disturbance input to the controlled output in the closed-loop system. The design variables are cross sectional areas of the truss members. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI) By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of simultaneous optimal design of structural and control systems.

Structure-Control Combined Design for 3-D Flexible Structure (3차원 유연구조물에 대한 구조-제어 통합설계)

  • Park Jung-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.109-114
    • /
    • 2004
  • A combined optimal design problem of structural and control systems is discussed by taking a 3-D flexible structure as an object. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI). By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of combined optimal design of structural and control systems.

Combined Optimal Design of Robust Control System and Structure System for Truss Structure with Collocated Sensors and Actuators

  • Park, Jung-Hyen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.2
    • /
    • pp.15-21
    • /
    • 2002
  • A control-structure combined optimal design problem is discussed taking a 3-D truss structure as a design object. We use descriptor forms for a controlled object and a generalized plant because the structural parameters appear naturally in these farms. We consider not only minimum weight design problem for structure system, but also suppression problem of the effect of disturbances for control system as the purpose of the design. A numerical example shows the validity of combined optimal design of structure and control systems. We also consider the validity of sensor-actuator collocation for control system design in this paper.