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1. INTRODUCTION 

 
The descriptor system model has a high ability in 

representing dynamical systems. It can preserve physical 
parameters in the coefficient matrices, and describe the 
dynamic part, static part, and even the improper part of the 
system in the same form. Models of chemical processes, for 
example, typically consist of differential equations describing 
the dynamic balance of mass and energy (that describes static 
constraints on physical variables) while additional algebraic 
equations account for thermodynamic equilibrium relations, 
steady-state assumptions, empirical correlations, etc. (these are 
static and impulsive parts of the physical system). In other 
words, the descriptor model is much superior to the 
state-space one. 

To design a controller for the descriptor system by using 
the general methods for the non-descriptor, requires 
modification of a descriptor system to a general state-space 
representation. That modification, however, necessarily causes 
a loss of information in the original descriptor system. In 
recent years, due to this fact, much work has been focused on 
analysis and design techniques for descriptor systems (see 
[1]).  

In this paper, we consider the mixed H2/ H∞ control 
problem for descriptor systems. That is, the goal of this 
problem is to minimize bounds on the H2-norm of the second 
channel , while keeping the H( 222 : zwT →

1 : wT
)

)
∞ norm bound 

of the first channel  less than γ , i.e., ( 11 z→

22min T  subject to γ<
∞1T  

The achieved controller, however, is to have the same 
structure as the plant, i.e. a descriptor system. In case of 
realizing the controller, non-descriptor one is preferred. So, 
under some conditions, we can have a non-descriptor 
controller by way of SVD transformation on the given plant. 

The paper is organized as follows. Section 2 gives the 
necessary background and some results related to the stability 
of descriptor systems. In section 3, we propose an LMI 
formulation for the H∞ and H2 synthesis problem by means of 
an adaptation of the ‘linearizing change of variables [8]. These 
results, in the sequel, show LMI algorithms of the mixed H2/ 
H∞ control problem for descriptor systems. In section 4, we 

confirm the validity of the proposed method through two 
numerical examples. 
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2. MIXED H2/ H∞ CONTROL PROBLEM FOR 

LINEAR DESCRIPTOR SYSTEMS  
 
2.1 Linear Descriptor Systems 

Let us consider a linear time-invariant descriptor system 
DwCxzBwAxxE +=+=    ,&         (1) 

where  is the descriptor variable,  is input, 
 is output, and , ,  

nR∈x
p

qp

qR∈w
,qnR ×∈R∈z nnR ×∈AE, npR ×∈CB

R ×∈D  are constant matrices. The matrix E  may be 
singular and we denote its rank by r n≤= Erank . As a 
shorthand notation for system (1) we often write 
( )DCB ,,AE ,, (or ( )  if ). C, 0=DBAE ,,
The system (1) has a unique solution for any initial conditions 
and constraints input ( )•w  if det . In this case, 
(1) is said to be regular. On the other hand, a non-regular 
system always admits multiple solutions for the unforced 

( ) 0≠− AEs

( )0=w  homogenous initial value problem. For a regular 
system (1), the transfer matrix 

DBAEC +−= −1)(:)( ssG           (2) 
can be defined. The question of impulsive solutions of regular 
systems is usually studied in terms of the Weierstrass 
canonical form (WCF) of ( )DCBAE ,,,, . 
Theorem 1 [9]: Let ( )DCBAE ,,,,  be regular. Then there 
exists an equivalent system ( ) ( )DCBAEDCB ,,,,~AE ~,~,~,~,~  
with 
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then the part  (slow mode) of the descriptor vector 

sx
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T xxx =  is governed by an ordinary differential 

equation while 
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represents impulsive (fast) mode of the system (1) (with ( )tδ  
the Dirac delta and the superscript (i) means the ith derivative). 
We conclude that descriptor systems will have no impulsive 
solutions (for all  and all the initial conditions) 
if and only if their index is one. 

( ) ),0[2 ∞∈• Lw The following theorem is based on a LMI characterization of 
admissibility and H∞ norm bound of the closed-loop system. 
Theorem 2 [1](Generalized Bounded Real Lemma) A system 
( )∞clclclcl CBAE ,,,  is admissible and   

2.2 Mixed H2/ H∞ control problem 
( ) clclclclclcl sGG BAEC 1:   , −

∞∞∞∞ −=< γ      (12) 
~

We consider a generalized plant G that is a descriptor system 
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if and only if there exists matrix P  which satisfies 

0~~    ≥= cl
TT
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where  denotes the descriptor variables,  the 
control input, w  the disturbance input, the 
external output related to H

Rx∈

iC and

2mRu∈
1pRz ∈∞

1mR∈

∝ control, z  the external 
output related to H

2
2

pR∈
32 control, and the measured output. 

 are constant matrices of appropriate dimension 
and 

pRy∈

iBA  ,
E  is a possibly singular matrix having the same 

dimension as . Notice that in the descriptor setup there is 
no loss of generality in not considering a direct fed-through 
from control/disturbance input to external/measured output 
since the corresponding terms can be captured by additional 
descriptor variables ([1], refer example 1 of section 4). 

A

Proof. This is a well-known result of LMI theory for 
descriptor systems.              
Theorem 2 represents a convenient tool for checking a H∞ 
norm bound of a descriptor system since it only requires the 
computation of the solution of the LMIs (13), (14), i.e. the 
solution of a feasibility problem. 
 
3.2 LMI Synthesis 
In view of theorem 2, the existence of matrices 

, and KKKK DCBA ,,, P~ such that matrix inequalities (13), 
(14) hold true is sufficient for the H∞ control problem. 
However (14) is nonlinear in these matrix variables and 
therefore difficult to solve. The idea in the following is to 
provide a linearizing change of variables along with the lines 
of [10] in order to end up with linear matrix inequalities 
instead of (13) and (14). 

The focus of the mixed H2/ H∞ control problem is as follows: 
We want to find a dynamic output feedback controller  
(with ) in descriptor form 

EK
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To present a strict LMI condition, we introduce matrices 
( )rnn −×∈RUV ,

E

which are of full column rank and composed of 

bases of ( ker ) and ( ), respectively. TEker 
~

such that  
1. The closed-loop is regular and stable index one system. A 

system with these properties is said to be admissible [1]. 
2. The H2 norm of the closed-loop transfer matrix 

 is minimized while keeping the H
22 : zw →clT ∞ norm of 

the closed-loop transfer matrix  less than γ. 
∞∞ → zw:clT

A possible solution  of (14) is necessarily nonsingular, so 
we partition 

P
P~  and 1~−P  as 

( )







 +
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*
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T

T

N
NURVQEP           (15-a) 

In this paper, we assume two conditions related to the 
controller, that is, rank  and . Under this 
circumstance, it is always possible to make  without 
lose of generality by using proper similarity transformation 
[5]. 

rk =E nnK =

E E=K
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         (15-b) 

where  are symmetrical matrices, R∈QP, ( ) ( )rnrnR −×−∈RS,
)

 
are nonsingular matrices, and U  were already 
defined in theorem 2. And  are nonsingular matrices 
with proper dimension. For the simplicity of expression, we 
temporarily adopt matrices such as 

( rnnR −×∈V,
MN ,

Y,X

 
3. H∞ CONTROL PROBLEM FOR DESCRIPTOR 

SYSTEM  
 

( ) ( )TTT URVQEYVSUPEX +=+= ,        (16) 
~~

3 .1 Problem Setup 
Then from IPP =−1 , we obtain The plant from (7) 

21
~ Π=ΠP                (17-a) 
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together with the controller (8) forms a closed-loop system as 
follows: Since 

1Π  is nonsingular, a nonsingular congruence 
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Now we can determine the coefficient matrices of the 
controller (8). 
Theorem 4: Consider a plant (9) and a controller (8). There 
exists a full order controller (that is, and nnK = rK =Erank ) 
such that the closed-loop system (10) is admissible and H∞ 
norm is bounded by γ if and only if LMIs (22), (24) admits 
solution { }DCBARSQP ˆ,ˆ,ˆ,ˆ,,,,

KK DC ,
NM ,

. A controller (8) solving the H∞ 
norm problem then is given by matrices 

retrieving from (20) with nonsingular 
matrices such that 

KK BA ,,

Such a congruence transformation has been suggested in [10] 
in order to reveal the affine structure of underlying matrix 
inequalities. In order to carry out (18) and (19), we first define 
the change of variables as follows: 
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XYIMN −=T              (25) 
Proof Necessity: If there exists a solution P~  to the 
inequalities (13), (14) for the closed-loop system (10), we 
always express it as 

21
~ Π=ΠP  with nonsingular matrices 

21,ΠΠ as in (17-b). Therefore a nonsingular congruence 
transformation (18), (19) is possible. By introducing the 
nonlinear change of variables (20), we can confirm that the 
inequalities (18), (19) become (24), (22) with the result of 
theorem 4. 

Note that the new variables have dimensions 
, respectively. Then the direct calculation of 

inequalities (18) and (19) leads to (21) and (22). 

CBA ˆ,ˆ,ˆ

npmnnn ××× 32 ,,

0≥








QEEE
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Sufficiency: Assume that we have a solution 
{ }DCBARSQP ˆ,ˆ,ˆ,ˆ,,,,  to (22), (24). In order to show the 
validity of the obtained controller (in other words, whether the 
H∞ norm condition of the closed-loop system is satisfied), we 
need to establish nonsingular matrices P~,, 21 ΠΠ as in 
(15)~(17). Looking at the left upper block of 
(17-a), M should be chosen as (25). From theorem 4, we 
infer that 

N and 
XYI − is nonsingular. Hence we can always find 

square and nonsingular satisfying (25). After 
defining 

2

NM  and 
1,ΠΠ as in (17-b), we observe that these matrices 

are nonsingular, and we set 1
12

~ −ΠΠ=P
NM  , 

 to obtain (17-a). With 
nonsingular matrices , and the solutions 

{ }DCBARSQP ˆ,ˆ,ˆ,ˆ,,,,  to LMIs (22), (24), we can now 
determine controller matrices in this order 
through (20). Consequently, using the relationship (20), it is 
possible to express the inequalities (21), (22) by means of the 
matrices 

KAKB ,,KK CD ,

{ }KKK DC ,,K , BARSQP ,,,, , i.e. to reverse the 
linearizing change of variables. Recalling that 

1Π  is square 
and nonsingular, the congruence transformation (18), (19) can 
be reversed, and by theorem 2 we can confirm that the H∞ 
norm bound is satisfied with 1

12
~ −ΠΠ=P  and controller 

matrices . Hence the obtained controller 
indeed leads to 

KDKKK CBA ,,,

γ<
∞∞clG .             

( ) ( )
( ) ( )

( )
0

*
**ˆˆˆˆ
**ˆˆˆˆ

11

11

3332

3222

<





















−
−

+++++

+++++

I0CXC
IBYB

CBCBAYYACDBAA
CDBAACBCBAXAX

γ
γTTT

TTTT

TTTT

                    (22) 
By introducing full column matrices ( )rnn

RL R −×∈EE , that 
satisfy , we can further simplify the inequality (21). 
That is, (21) can be rewritten as 

T
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( )~~ TWe have rT
cl 2rank =PE , and E  can be 

assumed without loss of generality. Since the rank of a matrix 
is invariant under nonsingular congruence transformation, (21) 
can be written equivalently as 

0,0 >> L
T
LRR QEEPE

0>








L
T
Lr

rR
T
R

QEEI
IPEE           (24) 

i.e., as strict inequality. The inequalities (22), (24) are LMIs in 
the matrix variables , and they constitute 
sufficient conditions for the existence of a controller by which 
the H

DCBARSQP ˆ,ˆ,ˆ,ˆ,,,,

∞ norm condition is satisfied. 
Next, in order to retrieve controller matrices 

from the results of LMIs (22), (24) through 
(20), it is required to compute nonsingular matrices . 
The following theorem is needed. 

KKKK DCBA ,,,
NM , We can sum up controller computation as follows: 

1) Compute the matrices  
RL EEVU ,,,

Theorem 3: From the previous development we can assume 
without loss of generality that S  are nonsingular, and 

 are symmetrical and satisfy . 
Then 

R,
QP, 0,0 >> L

T
LR

T
R QEEPEE

( ) ( )TTT QEYVSUPEX =+= , URV+  is nonsingular. 

2) Solve the LMIs (22), (24). 
3) Compute the nonsingular matrices , which satisfy 

(25), then computation of controller matrices 
in this order. 

NM ,

KKKK ABCD ,,,

Proof: Since [ ]  are nonsingular, we 
multiply in the left side and  in the right 
side of (or

[ VEUE RL ,
]T

]
][ R VE [ UEL

X Y ). Then we can obtain 

 
3.3 H2 control for descriptor systems 
Here, we think about an LMI approach for H2 control of linear 
time-invariant descriptor systems. Let us consider the 
descriptor and its closed-loop system given in section 2: 
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where  are given in (16). YX ,
Proof By simply applying the congruence transformation with 

( )I1diag Π  to (34-a), (35-a) can be obtained. To show (35-b), 
some matrix manipulations are needed. We, first, carry out the 
congruence transformation to (34-b). That is, 
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The H2 norm for a descriptor system (27) is defined as 
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which is finite if and only if 
where we used (18) and the following relationships that were 
obtained through (13). 

0)(lim 2 =
∞→

sGcls
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To ensure finiteness of the H2 norm, we assume that the 
system (26) satisfies the following condition [12]. 
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From Schur Complement, (36) is equivalent to Therefore the H2 control problem is to obtain a controller by 

which the H2 norm of the closed loop system is less than, say, 
ν. It is known that the H2 norm of a descriptor system (28) can 
be computed as follows [9]: 
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The left side of (38) can be rewritten as follows: 
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Since [ ] [ ]  are nonsingular, we can check the 
following relationships: 
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auxiliary parameter W , we obtain the following result. That 
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Multiplying (39) by 1 from the left and by its 
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( ) ν<Wtrace                (34-c) where we used (40). Again applying Schur complement to 
(41), (35-b) is obtained. We have shown that (34) are 
equivalent to (35). So the rest of the proof (that is, the 
existence of a controller) can be done in the same way as in 
theorem 5.                

Now, we can derive a theorem, which is parallel to theorem 5 
and related to the H2 control problem. 
Theorem 5 Consider a descriptor system (26) with (30) and a 
controller (8). There exits a full order controller (that is, 

and ) such that the closed-loop system is 
admissible and the H

nnK = rK =Erank 
2 norm is bounded by ν if and only if 

LMIs (35) admits solution { }DCBARSQP ˆ,ˆ,ˆ,ˆ,,,, . 

 
3.4 LMI Conditions for Mixed H2/ H∞ control problem 
The mixed H2/ H∞ control problem is to design a controller (8) 
such that: (1) internally stabilizing the closed-loop system and 
(2) minimize H2 norm of the closed-loop while satisfying the 
given H∞ norm bound. Therefore, by combining the results of 
the previous subsections, we can easily obtain the following 
theorem: 
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Theorem 6 Consider a descriptor system (7) with (30). There 
exists a full order controller (8) such that the closed loop 
system is admissible and the H∞ norm is bounded by γ and the 
H2 norm is less than ν if and only if LMIs (22), (24), and (35) 
admit solutions { }DCBARSQP ˆ,ˆ,ˆ,ˆ,,,,

KKKK DCBA ,,,

. Then one of the 
controller (8) solving the mixed H2/H∞ control problem is 
given by matrices through (20) with 
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( ) ν<W trace               (35-c) 
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nonsingular matrices M satisfying (25).      N,
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As a result of this theorem, the mixed H2/ H∞ control problem 
can be solved by minimizing ν under the LMI constraints. 
That is, 

 Minimize )trace  subject to LMIs (22), (24), (34-a), 
and (34-b) Due to theorem 5, the controllers with a structure of (44) are 

parameterized by solutions to LMIs (22) and (24). Since any 
index one controller is equivalent to (44), the remaining thing 
is to show that, any specific solutions to the LMIs (22), (24), it 
is possible to choose M, N so that the controller takes the form 
of (44). 

Since this is so called the linear objective minimization 
problem, it is easily solved by using commercial software such 
as [9]. 
 

4.NON-DESCRIPTOR CONTROLLERS First, in order guarantee the non-singularity of , we select 
. Therefore, matrices M, N are determined to satisfy 

the following equations: 

22KA

rnK −= IA 22
 

In the previous section, we have obtained an explicit 
representation of the controller matrices by using the solution 
of LMIs. The controller, however, is set up in descriptor form 
(8). Since the objectives of the mixed H2/ H∞ control problem 
are closed loop feature, the design procedure itself does not 
guarantee any further structural properties of the controller 
(the closed loop is guaranteed to be index one – the controller 
is not). Furthermore, in order to implement the controller as a 
non-descriptor system, the obtained one has to be inverted. 
Especially in cases where the original controller is high index, 
this will cause numerical problems. Here, we suggest a 
procedure for obtaining a non-descriptor controller. 
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Without loss of generality, we consider a plant (7) and a 
controller (8) in normalized SVD representation, that is, we 
assume 

We determine through . This is 
always possible due to (25). The other matrices 

 can be solved from (47-a) under the condition 
that (2,2) block of A  is 
nonsingular. 
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and other matrices of the controller (8) are already 
decomposed according to the structure of (42). By applying 
the SVD representation to (15), we can fix structures of 
matrices as follows: MN ,

One of a non-descriptor controller is given such as: 
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5. NUMERICAL EXAMPLES 

 Related to the SVD representation, we need the following 
lemma[1]. The first example is from [8] by which we can confirm that 

our result is compatible with the existing non-descriptor 
systems. 

[Lemma] Let  be the SVD form of (42). Then the 
pair  is impulse-free if and only if  is 
nonsingular.                   

( KE ,
)( KK AE , 22KA Example 1: Consider the three-state unstable plant1: 
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We consider the controller (8), which was transformed to the 
SVD form: 
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[ ][ ] yDxCCu KKKK= 121
         (44-b) 

If  is nonsingular, a non-descriptor controller can be 
easily obtained as follows: 
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~ We transform (42) into (7), which has no direct fed-through 
terms from control/disturbance input to external/measured 
output. That is, by adopting extra variables such as 

uw == ξς ,2 , (42) can be rewritten as follows: 2
1
222

1
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2
1
221211211
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:~,:
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Here, if we suppose the condition , the feedthrough 
matrix also can be realized by 

rnp −≤3

KD 22
~,~

KK DC , with 

22 2 :~~
KKKK CDC −

0=

D=

KD

[12], i.e. without loss of generality 
we set . By using this assumption, (20) becomes                                                            

1 In the output , we omitted the term “u” in order to meet 
condition (30). 
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with 
 [ ]ξςψ TT x=              (43-b) 
By using the computation result of [10], we consider the 
mixed H2/ H∞ control problem as follows: 
 Minimize 

22wzT  subject to 6.23<
∞∞wzT  

Solving LMIs (22), (24), and (35) with 6.23=γ  yields 6.46 
as best constrained H2 performance, which is slightly lower 
than the result of [10].              
Next, we try to design a mixed H2/ H∞ controller by using 
Theorem 7. 
Example 2: Consider the following plant that is given by the 
descriptor format. 
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By applying Theorem 6, we obtain 1.86 as best constrained H2 
performance on the condition that H∞ norm is less than 1.77. 
The solutions of LMIs (22), (24), and (35) are as follows: 
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And the coefficient matrices of the controller (8) become: 
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In this case, the order of the controller is ostensibly increased 
by 2, because we augmented the original plant in order to 

eliminate “D terms” in the performance and plant output.  
 

6. CONCLUSION 
 

We considered the mixed H2/ H∞ control of linear descriptor 
systems. An LMI approach to the synthesis problem (based on 
a linearizing change of variables) reveals the relationship 
between the H2 and H∞ control problem of the descriptor 
systems. That is, by introducing extra LMI variables (V and 
U) which are determined only by matrix E , we could derive 
the generalized LMI conditions of descriptor systems that 
involve checking H2 norm and H∞ norm conditions of the 
different input-output channels. A controller computation 
procedure for the mixed H2/H∞ control problem based on the 
solution of linear matrix inequalities is provided. In this case, 
we assumed the controller was in descriptor form and had the 
same dimension as the plant. A Non-descriptor controller, 
however, can be easily derived by carrying out some 
numerical transformation in advance such as normalized SVD 
representations on the plant and control system [12]. Finally 
we showed two examples to confirm the validity of the 
proposed LMI conditions for descriptor systems. 
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