• 제목/요약/키워드: Derivative operator

검색결과 117건 처리시간 0.028초

ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS

  • Argyros, Ioannis Konstantinos;Cho, Yeol Je;George, Santhosh
    • 대한수학회지
    • /
    • 제51권2호
    • /
    • pp.251-266
    • /
    • 2014
  • In this paper, we use Newton's method to approximate a locally unique solution of an equation in Banach spaces and introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton's method than before [1]-[13], in some interesting cases, provided that the Fr$\acute{e}$chet-derivative of the operator involved is p-H$\ddot{o}$lder continuous (p${\in}$(0, 1]). Numerical examples involving two boundary value problems are also provided.

WEAK SUFFICIENT CONVERGENCE CONDITIONS AND APPLICATIONS FOR NEWTON METHODS

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • 제16권1_2호
    • /
    • pp.1-17
    • /
    • 2004
  • The famous Newton-Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newton method to a solution of an equation in connection with the Lipschitz continuity of the Frechet-derivative of the operator involved. Using Lipschitz and center-Lipschitz conditions we show that the Newton-Kantorovich hypothesis is weakened. The error bounds obtained under our semilocal convergence result are finer and the information on the location of the solution more precise than the corresponding ones given by the dominating Newton-Kantorovich theorem, and under the same hypotheses/computational cost, since the evaluation of the Lipschitz also requires the evaluation of the center-Lipschitz constant. In the case of local convergence we obtain a larger convergence radius than before. This observation is important in computational mathematics and can be used in connection to projection methods and in the construction of optimum mesh independence refinement strategies.

On the Fekete-Szegö Problem for a Certain Class of Meromorphic Functions Using q-Derivative Operator

  • Aouf, Mohamed Kamal;Orhan, Halit
    • Kyungpook Mathematical Journal
    • /
    • 제58권2호
    • /
    • pp.307-318
    • /
    • 2018
  • In this paper, we obtain $Fekete-Szeg{\ddot{o}}$ inequalities for certain class of meromorphic functions f(z) for which $-{\frac{(1-{\frac{{\alpha}}{q}})qzD_qf(z)+{\alpha}qzD_q[zD_qf(z)]}{(1-{\frac{{\alpha}}{q}})f(z)+{\alpha}zD_qf(z)}{\prec}{\varphi}(z)$(${\alpha}{\in}{\mathbb{C}}{\backslash}(0,1]$, 0 < q < 1). Sharp bounds for the $Fekete-Szeg{\ddot{o}}$ functional ${\mid}{\alpha}_1-{\mu}{\alpha}^2_0{\mid}$ are obtained.

크레인 구동부의 Yaw Motion에 관한 연구 (The Study on Yaw Motion of Crane Driving Mechanism)

  • 이형우;이성섭;박찬훈;박경택;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.336-336
    • /
    • 2000
  • This paper studied on the yaw motion of the gantry crane which is used for the automated container terminal. Though several problems are occurred in driving of gantry crane, they are solved by the motion by the operator. But if the gantry crane is unmanned, it is automatically controlled without any human operation. There are two types, cone and flat typo in driving wheel shape. In cone type, lateral vibration and yaw motion of crane are issued. To bring a solution to these problems, the dynamic equation of the gantry crane driving mechanism is derived and it used PD(Proportional-Derivative) controller to control the lateral vibration. The simulation result of the driving mechanism using the Runge-Kutta method is presented in this paper.

  • PDF

SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

  • Tu, Shih-Tong;Wang, Pin-Yu;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • 제18권1호
    • /
    • pp.111-125
    • /
    • 2002
  • Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus(that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investigations, the authors present yet another instance of applications of certain fractional calculus operators. Alternative derivations without using these fractional calculus operators are shown to lead naturally a family of analogous infinite sums involving hypergeometric functions.

  • PDF

CONVERGENCE THEOREMS FOR NEWTON'S AND MODIFIED NEWTON'S METHODS

  • Argyros, Ioannis K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권4호
    • /
    • pp.405-416
    • /
    • 2009
  • In this study we are concerned with the problem of approximating a locally unique solution of an equation in a Banach space setting using Newton's and modified Newton's methods. We provide weaker convergence conditions for both methods than before [5]-[7]. Then, we combine Newton's with the modified Newton's method to approximate locally unique solutions of operator equations. Finer error estimates, a larger convergence domain, and a more precise information on the location of the solution are obtained under the same or weaker hypotheses than before [5]-[7]. The results obtained here improve our earlier ones reported in [4]. Numerical examples are also provided.

  • PDF

FRACTIONAL POLYNOMIAL METHOD FOR SOLVING FRACTIONAL ORDER POPULATION GROWTH MODEL

  • Krishnarajulu, Krishnaveni;Krithivasan, Kannan;Sevugan, Raja Balachandar
    • 대한수학회논문집
    • /
    • 제31권4호
    • /
    • pp.869-878
    • /
    • 2016
  • This paper presents an ecient fractional shifted Legendre polynomial method to solve the fractional Volterra's model for population growth model. The fractional derivatives are described based on the Caputo sense by using Riemann-Liouville fractional integral operator. The theoretical analysis, such as convergence analysis and error bound for the proposed technique has been demonstrated. In applications, the reliability of the technique is demonstrated by the error function based on the accuracy of the approximate solution. The numerical applications have provided the eciency of the method with dierent coecients of the population growth model. Finally, the obtained results reveal that the proposed technique is very convenient and quite accurate to such considered problems.

EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

  • Chang, Yanxun;Zhang, Xiaoxiao
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.703-722
    • /
    • 2021
  • Let G = (V, E) be a connected locally finite and weighted graph, ∆p be the p-th graph Laplacian. Consider the p-th nonlinear equation -∆pu + h|u|p-2u = f(x, u) on G, where p > 2, h, f satisfy certain assumptions. Grigor'yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Ω ⊂ V. In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m-order differential operator 𝓛m,p, we also prove the existence of the nontrivial solution to the analogous nonlinear equation.

EXISTENCE AND CONTROLLABILITY OF IMPULSIVE FRACTIONAL NEUTRAL INTEGRO-DIFFERENTIAL EQUATION WITH STATE DEPENDENT INFINITE DELAY VIA SECTORIAL OPERATOR

  • MALAR, K.;ILAVARASI, R.;CHALISHAJAR, D.N.
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권3_4호
    • /
    • pp.151-184
    • /
    • 2022
  • In the article, we handle with the existence and controllability results for fractional impulsive neutral functional integro-differential equation in Banach spaces. We have used advanced phase space definition for infinite delay. State dependent infinite delay is the main motivation using advanced version of phase space. The results are acquired using Schaefer's fixed point theorem. Examples are given to illustrate the theory.

QUALITATIVE ANALYSIS FOR FRACTIONAL-ORDER NONLOCAL INTEGRAL-MULTIPOINT SYSTEMS VIA A GENERALIZED HILFER OPERATOR

  • Mohammed N. Alkord;Sadikali L. Shaikh;Saleh S. Redhwan;Mohammed S. Abdo
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.537-555
    • /
    • 2023
  • In this paper, we consider two types of fractional boundary value problems, one of them is an implicit type and the other will be an integro-differential type with nonlocal integral multi-point boundary conditions in the frame of generalized Hilfer fractional derivatives. The existence and uniqueness results are acquired by applying Krasnoselskii's and Banach's fixed point theorems. Some various numerical examples are provided to illustrate and validate our results. Moreover, we get some results in the literature as a special case of our current results.