• Title/Summary/Keyword: Deposition system

Search Result 1,621, Processing Time 0.028 seconds

Aerosol Jet Deposition of $CuInS_2$ Thin Films

  • Fan, Rong;Kong, Seon-Mi;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.159-159
    • /
    • 2011
  • Among the semiconductor ternary compounds in the I-III-$VI_2$ series, $CulnS_2$ ($CulnSe_2$) are one of the promising materials for photovoltaic applications because of the suitability of their electrical and optical properties. The $CuInS_2$ thin film is one of I-III-$VI_2$ type semiconductors, which crystallizes in the chalcopyrite structure. Its direct band gap of 1.5 eV, high absorption coefficient and environmental viewpoint that $CuInS_2$ does not contain any toxic constituents make it suitable for terrestrial photovoltaic applications. A variety of techniques have been applied to deposit $CuInS_2$ thin films, such as single/double source evaporation, coevaporation, rf sputtering, chemical vapor deposition and chemical spray pyrolysis. This is the first report that $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) technique which is a novel and attractive method because thin films with high deposition rate can be grown at very low cost. In this study, $CuInS_2$ thin films have been prepared by Aerosol Jet Deposition (AJD) method which employs a nozzle expansion. The mixed fluid is expanded through the nozzle into the chamber evacuated in a lower pressure to deposit $CuInS_2$ films on Mo coated glass substrate. In this AJD system, the characteristics of $CuInS_2$ films are dependent on various deposition parameters, such as compositional ratio of precursor solution, flow rate of carrier gas, stagnation pressure, substrate temperature, nozzle shape, nozzle size and chamber pressure, etc. In this report, $CuInS_2$ thin films are deposited using the deposition parameters such as the compositional ratio of the precursor solution and the substrate temperature. The deposited $CuInS_2$ thin films will be analyzed in terms of deposition rate, crystal structure, and optical properties.

  • PDF

Performance Improvement of Polymer Deposition System by Nozzle Guide and Its Application to Washer Scaffold Fabrication (노즐 가이드를 적용한 폴리머 적층 시스템의 Washer Scaffold 제작을 위한 성능 개선)

  • Sa, Min-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.249-257
    • /
    • 2013
  • Rapid prototyping was used to design and develop a three-dimensional (3D) scaffold for tissue engineering application. In this study, the nozzle guide (TB-CP-HN, MUSASHI ENGINEERING, INC., JAPAN) used with the syringe of the polymer deposition system (PDS) was evaluated by measuring the scaffold line width and height. 3D scaffolds were fabricated using a biodegradable polymer called poly-caprolactone (PCL). The PCL polymer can be deposited from the needle of a syringe using a 200-${\mu}m$ precision nozzle, at a pressure of 600 kPa and temperature of $125^{\circ}C$. The advantages and improvements in this nozzle guide were addressed through washer scaffold fabrication. Overall, this research indicated that the fabrication of a complex-shaped scaffold using an enhanced polymer deposition system may have potential for tissue engineering.

Thermodynamic Prediction of TaC CVD Process in TaCl5-C3-H6-H2 System (TaCl5-C3-H6-H2 계에서 TaC CVD 공정의 열역학 해석)

  • Kim, Hyun-Mi;Choi, Kyoon;Shim, Kwang-Bo;Cho, Nam-Choon;Park, Jong-Kyoo
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • An ultra-high temperature ceramic, tantalum carbide, has received much attention for its favorable characteristics: a superior melting point and chemical compatibility with carbon and other carbides. One drawback is the high temperature erosion of carbon/carbon (C/C) composites. To address this drawback, we deposited TaC on C/C with silicon carbide as an intermediate layer. Prior to the TaC deposition, the $TaCl_5-C_3H_6-H_2$ system was thermodynamically analyzed with FactSage 6.2 and compared with the $TaCl_5-CH_4-H_2$ system. The results confirmed that the $TaCl_5-C_3H_6-H_2$ system had a more realistic cost and deposition efficiency than $TaCl_5-CH_4-H_2$. A dense and uniform TaC layer was successfully deposited under conditions of Ta/C = 0.5, $1200^{\circ}C$ and 100 torr. This study verified that the thermodynamic analysis is appropriate as a guide and prerequisite for carbide deposition.

Development of Energy Harvesting Hybrid system consisted of Electrochromic Device and Dye-Sensitized Solar Cell using Nano Particle Deposition System (나노 입자 적층 시스템(NPDS)을 이용한 염료 감응 태양전지 - 전기 변색 통합 소자 및 에너지 하베스팅 시스템에 대한 연구)

  • Kim, Kwangmin;Kim, Hyungsub;Choi, Dahyun;Lee, Minji;Park, Yunchan;Chu, Wonshik;Chun, Dooman;Lee, Caroline Sunyong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • In this study, Antimony Tin Oxide (ATO) ion storage layer and $TiO_2$ working electrode were fabricated using Nano Particle Deposition System. NPDS is the cutting-edge technology among the dry deposition methods. Accelerated particles are deposited on the substrate through the nozzle using NPDS. The thicknesses for coated layers were measured and layer's morphology was acquired using SEM. The fabricated electrochromic cell's transmittance was measured using UV-Visible spectrometer and power source at 630 nm. As a result, the integrated electrochromic/DSSC hybrid system was successfully fabricated as an energy harvesting system. The fabricated electrochromic cell was self-operated using DSSC as a power source. In conclusion, the electrochromic cell was operated for 500 cycles, with 49% of maximum transmittance change. Also the photovoltaic efficiency for DSSC was measured to be 2.55% while the electrochromic cell on the integrated system had resulted in 26% of maximum transmittance change.

Parametric Effects of Elastic Property Extraction System of Polycrystalline Thin-Films for Micro-Electro-Mechanical System Devices (MEMS 부품을 위한 다결정 박막의 탄성 물성치 추출 시스템의 매개변수의 영향)

  • 정향남;최재환;정희택;이준기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.50-54
    • /
    • 2004
  • A numerical system to extract effective elastic properties of polycrystalline thin-films for MEMS devices is already developed. In this system, the statistical model based on lattice system is used for modeling the microstructure evolution simulation and the key kinetics parameters of given micrograph, grain distributions and deposition process can be extracted by inverse method proposed in the system. In this work, the effects of kinetics parameters on the extraction of effective elastic properties of polycrystalline thin-films are studied by using statistical method. The effects of the fraction of the potential site( $f_{P}$ ) and the nucleation probability( $P_{N}$ ) among the parameters for deposition process of microstructure on the extraction of effective elastic properties of polycrystalline thin-films are studied.d.d.

  • PDF

Corrosion Protection of Automotive Steels by Novel Water-borne Primer Systems

  • Ooij, William J. van;Puomi, Paula
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.239-244
    • /
    • 2007
  • Corrosion protection of automotive steels has traditionally been assured by using a zinc phosphate metal pretreatment followed by the deposition of a cathodic electrocoat system. This system has been developed and optimized over the years into a highly robust and dependable system with a high performance. However, in terms of efficiency and use of resources and energy, the need is now felt to develop a simpler system with fewer steps, shorter lines, less energy requirements (curing and e-coat deposition) and less stringent waste disposal requirement (phosphate sludge). We report here on the development of a one-step system that can possibly replace both the zinc phosphate and the e-coating processes. Such a system is based on the so-called superprimer concept that we have recently developed for the replacement of chromate pretreatment and chromate-containing primers in the aerospace industry. With some modifications, such systems can also be adapted for use in the automotive industry.

Fabrication of Composite Drug Delivery System Using Nano Composite Deposition System and in vivo Characterization

  • Chu, Won-Shik;Jeong, Suk-Yong;Pandey, Jitendra Kumar;Ahn, Sung-Hoon;Lee, Jae-Hoon;Chi, Sang-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.81-83
    • /
    • 2008
  • The Rapid Prototyping (RP) technology has advanced in many application areas. In this research, two different types, cylinder and scaffold, of implantable Drug Delivery System (DDS) were fabricated using Nano Composite Deposition System (NCDS), one of the RP systems. The anti-cancer drug (5-fluorouracil, 5-FU), biodegradable polymer (PLGA(85: 15)), and bio ceramic (Hydroxyapatite, HA) were used to form drug-polymer composite material. Both types of DDS were evaluated in vivo environment for two weeks. For evaluation, the cumulative drug release and shape stability were measured. Test results showed that the scaffold DDS provide higher cumulative drug release and has better stability than cylinder DDS.

Source-Receptor Relationships of Transboundary Air Pollutants in East Asia Region Simulated by On-Line Transport Model

  • Jang, Eun-Suk;Itsushi Uno
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.111-116
    • /
    • 2000
  • Transboundary air pollution has recently become an area of increasing scientific interest and political concern as countries are receiving air pollutants from their neighbors. In order to gain a better understanding of the long-range transport processes of air pollutants and the source-receptor relationships among neighboring countries, an atmospheric transport model coupled with a RAMS(Regional Atmospheric Modeling System) model was applied to the East Asia region during the entire month of January 1993. The scalar transport option of the RAMS model was used to calculate special atmospheric constituents such as trace gases or aerosols. The sulfate production in clouds and rainwater and its removal processes by dry and wet deposition were considered. The sulfate budget from source regions to receptor regions was estimated by analysing the source-receptor relationships. When a specific receptor site revealed a sulfate value higher than the sulfate concentration based on its own source origin, this was taken to indicate long-range transport from another source region. The contribution ratio from various source region was calculated. The contribution ratio of dry and wet deposition was higher on the main continent of the East region. Furthermore, the high deposition amounts were identified on the west coast of Korea and the East China Sea.

  • PDF

Thermodynamic analysis of the deposition process of SiC/C functionally gradient materials by CVD technique (CVD법을 이용한 SiC/C경사기능재료 증착공정의 열역학적 해석)

  • 박진호;이준호;신희섭;김유택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.101-109
    • /
    • 2002
  • A complex chemical equilibrium analysis was performed to study the hot-wall CVD process of the SiC/C functionally gradient materials (FGM). Thermochemical calculations of the Si-C-H-Cl system were carried out, and the effects of process variables(deposition temperature, reactor pressure, C/[Si+C] and H/[Si+C] ratios in the source gas) on the composition of deposited layers and the deposition yield were investigated. The CVD phase diagrams of the SiC/C FGM deposition were obtained, and the optimum process windows were estimated from the results.

Heuristics for Scheduling Wafer Lots at the Deposition Workstation in a Semiconductor Wafer Fab (반도체 웨이퍼 팹의 흡착공정에서 웨이퍼 로트들의 스케쥴링 알고리듬)

  • Choi, Seong-Woo;Lim, Tae-Kyu;Kim, Yeong-Dae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.2
    • /
    • pp.125-137
    • /
    • 2010
  • This study focuses on the problem of scheduling wafer lots of several product families in the deposition workstation in a semiconductor wafer fabrication facility. There are multiple identical parallel machines in the deposition workstation, and two types of setups, record-dependent setup and family setup, may be required at the deposition machines. A record-dependent setup is needed to find optimal operational conditions for a wafer lot on a machine, and a family setup is needed between processings of different families. We suggest two-phase heuristic algorithms in which a priority-rule-based scheduling algorithm is used to generate an initial schedule in the first phase and the schedule is improved in the second phase. Results of computational tests on randomly generated test problems show that the suggested algorithms outperform a scheduling method used in a real manufacturing system in terms of the sum of weighted flowtimes of the wafer lots.