DOI QR코드

DOI QR Code

Performance Improvement of Polymer Deposition System by Nozzle Guide and Its Application to Washer Scaffold Fabrication

노즐 가이드를 적용한 폴리머 적층 시스템의 Washer Scaffold 제작을 위한 성능 개선

  • 사민우 (국립안동대학교 기계공학과) ;
  • 김종영 (국립안동대학교 기계공학과)
  • Received : 2012.03.23
  • Accepted : 2012.11.30
  • Published : 2013.03.01

Abstract

Rapid prototyping was used to design and develop a three-dimensional (3D) scaffold for tissue engineering application. In this study, the nozzle guide (TB-CP-HN, MUSASHI ENGINEERING, INC., JAPAN) used with the syringe of the polymer deposition system (PDS) was evaluated by measuring the scaffold line width and height. 3D scaffolds were fabricated using a biodegradable polymer called poly-caprolactone (PCL). The PCL polymer can be deposited from the needle of a syringe using a 200-${\mu}m$ precision nozzle, at a pressure of 600 kPa and temperature of $125^{\circ}C$. The advantages and improvements in this nozzle guide were addressed through washer scaffold fabrication. Overall, this research indicated that the fabrication of a complex-shaped scaffold using an enhanced polymer deposition system may have potential for tissue engineering.

쾌속조형기술을 이용한 3차원 형상의 인공지지체가 조직공학 적용을 위해 개발되고 제작되었다. 본 연구에서는 폴리머 적층 시스템을 이용한 스캐폴드 제작에 있어 시린지 노즐 부분에 노즐 가이드를 장착하여 폴리머 적층 폭과 높이 실험을 수행하였다. 이 때 인공지지체 제작을 위한 생체재료로 폴리카프로락톤이 사용되었다. 폴리머 적층 공정 조건으로는 600 kPa의 공압과 $125^{\circ}C$의 온도가 이용되었다. 성공적인 와셔 인공지지체 제작을 통해 폴리머 적층 시스템에 적용된 노즐 가이드의 성능이 검증되었다. 결론적으로, 향상된 폴리머 적층 시스템을 이용함으로써 복잡한 형상의 조직공학용 3 차원 인공지지체를 제작할 수 있을 것으로 기대된다.

Keywords

References

  1. Hutmacher, D. W., 2000, "Polymeric Scaffolds in Tissue Engineering Bone and Cartilage," Biomaterials, Vol. 21, pp. 2529-2543. https://doi.org/10.1016/S0142-9612(00)00121-6
  2. Mourino, V. and Boccaccini, A. R., 2010, "Bone Tissue Engineering Therapeutics: Controlled Drug Delivery in Three-Dimensional Scaffolds," J. R. Soc., Vol. 7, pp. 209-227. https://doi.org/10.1098/rsif.2009.0379
  3. Freyman, M., Yannas, Y. V. and Gibson, L., 2001, "Cellular Materials as Porous Scaffolds for Tissue Engineering," J. Prog. Mater. Sci., Vol. 46, pp. 273-278. https://doi.org/10.1016/S0079-6425(00)00018-9
  4. Hutmacher, D. W., 2001, "Scaffold Design and Fabrication Technologies for Engineering Tissues: State of the Art and Future Perspectives," J. Biomater. Sci. Polym. Ed, Vol. 12, pp. 107-124. https://doi.org/10.1163/156856201744489
  5. Guarino, V., Causa, F. and Ambrosio, L., 2007, "Bioactive Scaffolds for Bone and Ligament Tissue," Exp. Rev. Med. Devices, Vol. 4, pp. 405-418. https://doi.org/10.1586/17434440.4.3.405
  6. Moroni, L., De Wijn, J. R. and Van Blitterswik, C. A., 2008, "The Integrating Novel Technologies to Fabricate Smart Scaffolds," J. Biomater. Sci. Polym. Ed., Vol. 19, pp. 543-572. https://doi.org/10.1163/156856208784089571
  7. Chen, Q. Z., Bretcanu, O. and Boccaccini, A. R., 2008, "Inorganic and Composite Bioactive Scaffolds for Bone Tissue Engineering." In Biomaterials Fabrication and Processing Handbook (Eds P. K. Chu & X. Liu). Boca Raton, FL: CRC Press.
  8. Ahn, S. H., Koh, Y. H. and Kim, G. H., 2010, "A Three-Dimensional Hierarchical Collagen Scaffold Fabricated by a Combined Solid Freeform Fabrication (SFF) and Electrospinning Process to Enhance Mesenchymal Stem Cell (MSC) Proliferation," J. Micromech. Microeng., Vol. 20, No. 6, 065015(7pp)
  9. Kim, J. Y., Park, E. K., Kim, S. Y. and Cho, D. W., 2008, "Development of Multi-Head Deposition System and Fabrication of 3D Scaffolds for Tissue Engineering," KSPE 08S052, pp. 105-106.
  10. Iwan, Z., Hutmacher, D. W., Kim, C. T. and Swee, H. T., 2002, "Fused Deposition Molding of Novel Scaffold Architectures for Tissue Engineering Applications," Biomaterials, Vol. 23, pp. 1169-1185. https://doi.org/10.1016/S0142-9612(01)00232-0
  11. Kim, J. Y., Park, E. K., Kim, S. Y., Shin, J. W. and Cho, D. W., 2008, "Fabrication of a SFF-Based Three-Dimensional Scaffold Using a Precision Deposition System in Tissue Engineering," J. Micromech. Microeng., Vol. 18, No. 5, 055027(7pp)
  12. Yeo, M. G. and Kim, G. H., 2011, "Preparation and Characterization of 3D Composite Scaffolds Based on Rapid-Prototyped PCL/$\beta$-TCP Struts and Electrospun PCL Coated with Collagen and HA for Bone Regeneration," Chem. Mater., Vol. 24, No. 4, pp. 903-913.
  13. Kim, J. Y., Yoon, J. J., Park, E. K., Kim, S. Y. and Cho, D. W., 2009, "Fabrication of 3D PCL/PLGA/TCP Bioscaffold Using Multi-Head Deposition System and Design of Experiment," KSPE, Vol. 26, pp. 146-154.
  14. Shim, J. H., Lee, J. S. and Kim, J. Y., 2012, "Fabrication of Solid Freeform Fabrication Based 3D Scaffold and Its In-Vitro Characteristic Evaluation for Bone Tissue Engineering," Tissue Eng. Regen. Med., Vol. 9, No. Suppl.1, pp. 16-23.
  15. Vozzi, G., Previti, A., De Rossi, D., M. S. and Ahluwalia, A., 2002, "Microsyringe based Deposition of Two Dimensional and Three Dimensional Polymer Scaffolds with a Well Defined Geometry for Application to Tissue Engineering," Tissue Eng., Vol. 8, No. 6, pp. 1089-1098. https://doi.org/10.1089/107632702320934182
  16. Lee, S. G., 2008, "Percutaneous Pedicle Screw Fixation in the Lumbar Spine," Hanyang Med. Rev., Vol. 28, No. 1, pp. 59-64.
  17. Shin, B. G., Lee, J. C., Kim, Y. I., and Lee, J, S., 2009, "More Than 5 Year Follow-Up of Thoracolumbar Fractures Treated By Pedicle Screw Fixation," J. Korean Soc. Spine Surg., Vol. 16, No. 4, pp. 251-258. https://doi.org/10.4184/jkss.2009.16.4.251