• Title/Summary/Keyword: Deposition Mechanism

Search Result 554, Processing Time 0.028 seconds

Recent progress on Performance Improvements of Thermoelectric Materials using Atomic Layer Deposition (원자층 증착법을 이용한 열전 소재 연구 동향)

  • Lee, Seunghyeok;Park, Tae Joo;Kim, Seong Keun
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.56-62
    • /
    • 2022
  • Atomic layer deposition (ALD) is a promising technology for the uniform deposition of thin films. ALD is based on a self-limiting mechanism, which can effectively deposit thin films on the surfaces of powders of various sizes. Numerous studies are underway to improve the performance of thermoelectric materials by forming core-shell structures in which various materials are deposited on the powder surface using ALD. Thermoelectric materials are especially relevant as clean energy storage materials due to their ability to interconvert between thermal and electrical energy by the Seebeck and Peltier effects. Herein, we introduce a surface and interface modification strategy based on ALD to control the performance of thermoelectric materials. We also discuss the properties of the interface between various deposition materials and thermoelectric materials.

Kalkitoxin attenuates calcification of vascular smooth muscle cells via RUNX-2 signaling pathways

  • Saroj K Shrestha;Se-Woong Kim;Yunjo Soh
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.69.1-69.11
    • /
    • 2023
  • Background: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. Objectives: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. Methods: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. Results: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runtrelated transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1α, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1α, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. Conclusions: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.

Composition Control of YSZ Thin Film Prepared by MOCVD

  • Matsuzaki, Tomokazu;Okuda, Norikazu;Shinozaki, Kazuo;Mizutani, Nobuyasu;Funakubo, Hiroshi
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.134-137
    • /
    • 2000
  • Zirconia films stabilized b $Y_2O_3$, YSZ, films were deposition by metal organic chemical vapor deposition (MOCVD) onto various kind of substrates. $Y_2O_3$, $ZrO_2$and the mixtures of these two were deposited and characterized. The deposition rate, the film composition and the structure could be systematically varied through the $Y(C_{11}H_{19}O_2)_3$, Zr(O.t-$C_H_9)_4$source gas ratios and the deposition temperature. The Y/Zr ratio in YSZ film could be adjusted by controlling the ratio of $Y(C_{11}H_{19}O_2)_3$, Zr(O.t-$C_4H_9)_4$partial pressures. This is because the ratios of the deposition rates of Y and Zr atoms in $Y_2O_3$and $ZrO_2$films to those in YSZ films, Ф, are constant irrespective of the input gas concentration. However, the Y/Zr ratio was found to be smaller than that estimated based on the deposition rates of un-mixed $Y_2O_3$and $ZrO_2$films. This is because the Фs of Y and Zr atoms are not equal. The activation energy of $Y_2O_3$component in YSZ films was similar to that of $ZrO_2$component in YSZ films. These YSZ values were more than 4 times larger than those of un-mixed $Y_2O_3$or $ZrO_2$films.

  • PDF

Studies on Electrodeposition Mechanism of Zinc By A.C. Impedance Measurement (A.C. 임피던스 측정에 의한 아연의 전착기구에 관한 고찰)

  • An, Deok-Su;Ye, Gil-Chon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.26-26
    • /
    • 2007
  • To attest zinc electrodeposition mechanism, electric circuit models for zinc electro reaction on Pt electrode are analyzed from the a.c. impedance data. Electrochemical reactions of zinc deposition are composed of the three electrochemical reactions on the cathode layer and of the induced electrode layers.

  • PDF

Sol-Gel Processing for Preparation of Metal Oxide Films

  • Korobova Natalya;Soh, Dea-Wha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.259-264
    • /
    • 2000
  • Systematic research of metal alkoxide electrophoretic deposition has been developed. The formation mechanism of electrophoretic deposits has been offered. The structure study of dry and heat-treated electrophoretic deposits has been established. The concrete examples of one and bi-component oxide thin film formation were considered. The new approaches for thin film technology have developed on various substrates of different shapes and sizes. The correlation between thin film structure, mechanism of their formation, and physico-chemical properties has been determined.

  • PDF

The Effects of Deposition Variables on the CVD of SiC (증착변수가 SiC 화학증착에 미치는 영향)

  • So, Myoung-Gi;Nam, In-Tak
    • Journal of Industrial Technology
    • /
    • v.4
    • /
    • pp.37-41
    • /
    • 1984
  • Deposits of SiC has been formed by a chemical vapor deposition technique involving the application of gaseous mixture of $CH_3SiCl_3$ (MTS) and $H_2$ onto graphite substrate. These are non-fluid bed deposits prepared in an induction-heated reactor. From the experimental results, the deposition reaction of SiC is controlled by surface reaction mechanism at the temperature range between $1,100^{\circ}C$ and $1,400^{\circ}C$. The morphology of the SiC deposits changes from amorphous type to coarse, faceted structure as temperature increase.

  • PDF

Scouring Characteristics at the Toe of the Rubble Mound Breakwater (사석방파제 toe부에서의 세굴특성에 관한 연구)

  • 윤한삼;남인식;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.7-12
    • /
    • 2002
  • This study is aimed to find the scouring mechanism at the toe of rubble mound structures. To investigate the characteristics of scouring in front of the structure, experiments were performed with regular waves in a 2-D flume. The results of this study are as follows. 1) It can be said the characteristics of incident wave causes rolling and sliding of armour block. The difference of wave pressure on the slope, internal flow as well as settlement of armour block due to the weight cause scouring. 2) It is observed that scouring depth at the toe increased when wave height or period increased. The location of ultimate scouring and deposition depth moved seaward when wave period increased. 3) The failure of rubble mound structure was caused by waves or scouring. Failure by erosion increased with high waves and long waves. 4) Using surf-similarity parameter including characteristics of incident waves and structure, scouring and deposition pattern were found and their limit was formulated.

Growing High-Quality Ir-Sb Nanostructures by Controlled Electrochemical Deposition

  • Nisanci, Fatma Bayrakceken
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.165-171
    • /
    • 2020
  • The electrochemical preparation and spectroscopic characterisation of iridium-antimony (Ir-Sb) species is important owing to their potential applications as nanostructure materials. Nanostructures, i.e. nanoflower and nanodisk, of Ir-Sb were electrodeposited on conductive substrates using a practical electrochemical method based on the simultaneous underpotential deposition (UPD) of Ir and Sb from the IrCl3 and Sb2O3 at a constant potential. Electrochemical UPD mechanism of Ir-Sb was studied using cyclic voltammetry and potential-controlled electrochemical deposition techniques. Herein, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron and Raman spectroscopy were used to determine the morphological and structural properties of the electrochemically-synthesised Ir-Sb nanostructures.

Chemical Vapor Deposition of Tungsten on TiN Surface (TiN 표면위에 텅스텐의 화학증착)

  • Yi, Chung;Rhee, Shi-Woo;Lee, Kun-Hong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.49-57
    • /
    • 1992
  • Tungsten film was deposited on the TiN surface in a low pressure chemical vapor deposition reactor and chemical reaction mechanism between TiN surface and ($WF_{6}\;and\;SiH_{4}$ was studied. Interaction of ($WF_{6}\;or\;SiH_{4}$ with TiN surface and tungsten was deposited more easily. $WF_6$ reacted with TiN activated the TiN surface to form volatile TiF_4$ and tungsten nuclei were formed. ($SiH_{4}$ was dissociated on the TiN surface to form silicon nuclei. From RBS and AES analysis, we could not detect the impurities(such as Si or TiF$_x$)at the interface between tungsten and TiN. The adhesion at the W/TiN interface became poor when the deposition temperature was below 275$^{\circ}C$.

  • PDF

FORMATION OF AMORPHOUS NICKEL-PHOSPHORUS ALLOY FILM

  • Yamashita, Tsugito;Komiyama, Toyohiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.720-723
    • /
    • 1996
  • The behavior of electrodeposition of amorphous nickel-phosphorus has been studied from the point of deposition mechanism, kinetic parameters, morphology and formation of alloy films. The electorode reaction and electrode kinetics of deposition of nickel were significantly influenced by the content of phosphorus. The cathodic deposition of nickel-phosphorus alloy might be governed by the diffusion process of phosphorous acid. The direction of growth layer of the nickel-phosphorus alloy was different with substrate material. The formation of nickel-phosphorus alloy films was affected considerably by the solution compositions, electrolytic conditions and properties of the material as an underlayer.

  • PDF