Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00073

Growing High-Quality Ir-Sb Nanostructures by Controlled Electrochemical Deposition  

Nisanci, Fatma Bayrakceken (Narman Vocational Training High School, Ataturk University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.2, 2020 , pp. 165-171 More about this Journal
Abstract
The electrochemical preparation and spectroscopic characterisation of iridium-antimony (Ir-Sb) species is important owing to their potential applications as nanostructure materials. Nanostructures, i.e. nanoflower and nanodisk, of Ir-Sb were electrodeposited on conductive substrates using a practical electrochemical method based on the simultaneous underpotential deposition (UPD) of Ir and Sb from the IrCl3 and Sb2O3 at a constant potential. Electrochemical UPD mechanism of Ir-Sb was studied using cyclic voltammetry and potential-controlled electrochemical deposition techniques. Herein, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron and Raman spectroscopy were used to determine the morphological and structural properties of the electrochemically-synthesised Ir-Sb nanostructures.
Keywords
Electrodeposition; Ir-Sb; Semiconductor; Nanostructure; Iridium; Antimon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Alanyalioglu, F. Bayrakceken, U. Demir, Electrochim. Acta., 2009, 54(26), 6554-6559.   DOI
2 F. Bayrakceken Nisanci, T. Oznuluer, U. Demir, Electrochimica Acta, 2013, 108, 281-287.   DOI
3 C. Gu, H. Xu, M. Park, C. Shannon, Langmuir, 2009, 25(1), 410-414.   DOI
4 W. Zhu, X. Liu, H. Liu, D. Tong, J. Yang, J. Peng, J. Am. Chem. Soc., 2010, 132(36), 12619-12626   DOI
5 T. Pauporte, D. J. Lincot, Electrochem. Soc., 2001, 148(4), C310-C314.   DOI
6 T. S. Snider, J. V. Badding, S. B. Schujman, G. A. Slack, Chem. Mater., 2000, 12(3), 697-700.   DOI
7 M. H. Elsheikh, D. A. Shnawah , F. M. Sabri, S. B. M. Said, M. H. Hassan, M. B. A. Bashir, M. Mohama, Renewable and Sustainable Energy Reviews, 2014, 30, 337-355.   DOI
8 D. J. Singh, Semicond. Semimetals, 2001, 125-177.
9 K. Takegahara, H. Harima, Physica B, 2003, 328(1-2), 74-76.   DOI
10 A. P. Alivisatos, Science, 1996, 271(5251), 933-937.   DOI
11 R. Venkatasubramanian, E. Siivola, T. Colpitts, B. Quinn, Nature, 2001, 413(6856), 597-602.   DOI
12 Y. Miyazaki, T. Kajitani, Journal of Crystal Growth, 2001, 229(1-4), 542-546.   DOI
13 A. Purkayastha, F. Lupo, S. Kim, T. Borca-Tasciuc, G. Ramanath, Adv. Mater., 2006, 18(4), 496-500.   DOI
14 A. L. Prieto, M. S. Sander, M. S. Martin-Gonzalez, R. Gronsky, T. Sands, A.M. Stacy, J. Am. Chem. Soc., 2001, 123(29), 7160-7161.   DOI
15 C. Murphy, J. Anal. Chem., 2002, 74(19), 520-526.   DOI
16 L.A. Swafford, L.A. Weigand, M.J. Bowers, J.R. McBride, J.L. Rapaport, T.L., Watt, S.K. Dixit, L.C. Feldman, S.J. Rosenthal, J. Am. Chem. Soc., 2006, 128(37), 12299-12306.   DOI
17 D. M. Kolb, H. Gerischer, C. W. Tobias, Advances in electrochemistry and electrochemical engineering, Eds.; Wiley-Interscience, New York, 1978, 11, 125-271.
18 F. Bayrakceken Nisanci, U. Demir, Langmuir, 2012, 28(22), 8571-8578.   DOI
19 C. Woll, S. Chiang, R. J. H. Wilson, Physical Review B, 1989, 39(11), 7988-7991.   DOI
20 T. M. Tritt, G. S. Nolas, G. A. Slack, A. C. Ehrlich, D. J. Gillespie, J. L. Cohn, J. Appl. Phys, 1996, 79(11), 8412-8418.   DOI
21 U. Demir, C. Shannon, Langmuir, 1994, 10(8), 2794-2799.   DOI
22 J. Clavilier, R. Faure, G. Guinet, R. Durand, J. Electroanal. Chem., 1980, 107(1), 205-209.   DOI
23 B. W. Gregory and J. L. X. Stickney, J.Electroanal. Chem., 1991, 300(1-2), 543-561.   DOI
24 L.E. Brus, J. Phys. Chem., 1986, 90(12), 2555-2560.   DOI