DOI QR코드

DOI QR Code

Kalkitoxin attenuates calcification of vascular smooth muscle cells via RUNX-2 signaling pathways

  • Saroj K Shrestha (Laboratory of Pharmacology, School of Pharmacy, Jeonbuk National University) ;
  • Se-Woong Kim (Laboratory of Pharmacology, School of Pharmacy, Jeonbuk National University) ;
  • Yunjo Soh (Laboratory of Pharmacology, School of Pharmacy, Jeonbuk National University)
  • Received : 2023.06.05
  • Accepted : 2023.08.07
  • Published : 2023.09.30

Abstract

Background: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. Objectives: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. Methods: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. Results: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runtrelated transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1α, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1α, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. Conclusions: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.

Keywords

Acknowledgement

The authors are thankful to all members of the laboratory unit of the School of Pharmacy, Jeonbuk National University, for their assistance.

References

  1. Badimon L, Badimon JJ, Cohen M, Chesebro JH, Fuster V. Vessel wall-related risk factors in acute vascular events. Drugs. 1991;42 Suppl 5:1-9. https://doi.org/10.2165/00003495-199100425-00003
  2. Tinkov AA, Filippini T, Ajsuvakova OP, Skalnaya MG, Aaseth J, Bjorklund G, et al. Cadmium and atherosclerosis: a review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ Res. 2018;162:240-260. https://doi.org/10.1016/j.envres.2018.01.008
  3. Hruska KA, Mathew S, Saab G. Bone morphogenetic proteins in vascular calcification. Circ Res. 2005;97(2):105-114. https://doi.org/10.1161/01.RES.00000175571.53833.6c
  4. Ruan Y, Guo Y, Zheng Y, Huang Z, Sun S, Kowal P, et al. Cardiovascular disease (CVD) and associated risk factors among older adults in six low-and middle-income countries: results from SAGE Wave 1. BMC Public Health. 2018;18(1):778.
  5. London GM, Guerin AP, Marchais SJ, Metivier F, Pannier B, Adda H. Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transplant. 2003;18(9):1731-1740. https://doi.org/10.1093/ndt/gfg414
  6. Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: an early perspective. Am J Physiol Endocrinol Metab. 2004;286(5):E686-E696. https://doi.org/10.1152/ajpendo.00552.2003
  7. Wallin R, Wajih N, Greenwood GT, Sane DC. Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med Res Rev. 2001;21(4):274-301. https://doi.org/10.1002/med.1010
  8. Shroff RC, Shanahan CM. The vascular biology of calcification. Semin Dial. 2007;20(2):103-109. https://doi.org/10.1111/j.1525-139X.2007.00255.x
  9. Giachelli CM. Vascular calcification: in vitro evidence for the role of inorganic phosphate. J Am Soc Nephrol. 2003;14(9 Suppl 4):S300-S304. https://doi.org/10.1097/01.ASN.0000081663.52165.66
  10. Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24(7):1161-1170. https://doi.org/10.1161/01.ATV.0000133194.94939.42
  11. Bostrom KI, Rajamannan NM, Towler DA. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res. 2011;109(5):564-577. https://doi.org/10.1161/CIRCRESAHA.110.234278
  12. Shao JS, Cai J, Towler DA. Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol. 2006;26(7):1423-1430. https://doi.org/10.1161/01.ATV.0000220441.42041.20
  13. Cui RR, Li SJ, Liu LJ, Yi L, Liang QH, Zhu X, et al. MicroRNA-204 regulates vascular smooth muscle cell calcification in vitro and in vivo. Cardiovasc Res. 2012;96(2):320-329. https://doi.org/10.1093/cvr/cvs258
  14. Shan PF, Lu Y, Cui RR, Jiang Y, Yuan LQ, Liao EY. Apelin attenuates the osteoblastic differentiation of vascular smooth muscle cells. PLoS One. 2011;6(3):e17938.
  15. Derwall M, Malhotra R, Lai CS, Beppu Y, Aikawa E, Seehra JS, et al. Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(3):613-622. https://doi.org/10.1161/ATVBAHA.111.242594
  16. Johnson RC, Leopold JA, Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res. 2006;99(10):1044-1059. https://doi.org/10.1161/01.RES.0000249379.55535.21
  17. Byon CH, Javed A, Dai Q, Kappes JC, Clemens TL, Darley-Usmar VM, et al. Oxidative stress induces vascular calcification through modulation of the osteogenic transcription factor Runx2 by AKT signaling. J Biol Chem. 2008;283(22):15319-15327. https://doi.org/10.1074/jbc.M800021200
  18. Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A, et al. Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem. 1999;274(11):6972-6978. https://doi.org/10.1074/jbc.274.11.6972
  19. Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Annu Rev Cell Dev Biol. 2009;25(1):629-648. https://doi.org/10.1146/annurev.cellbio.042308.113308
  20. Doherty TM, Fitzpatrick LA, Inoue D, Qiao JH, Fishbein MC, Detrano RC, et al. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev. 2004;25(4):629-672. https://doi.org/10.1210/er.2003-0015
  21. Inada M, Yasui T, Nomura S, Miyake S, Deguchi K, Himeno M, et al. Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn. 1999;214(4):279-290. https://doi.org/10.1002/(SICI)1097-0177(199904)214:4<279::AID-AJA1>3.0.CO;2-W
  22. Wu M, Okino T, Nogle LM, Marquez BL, Williamson RT, Sitachitta N, et al. Structure, synthesis, and biological properties of kalkitoxin, a novel neurotoxin from the marine cyanobacterium Lyngbya majuscula. J Am Chem Soc. 2000;122(48):12041-12042. https://doi.org/10.1021/ja005526y
  23. Morgan JB, Liu Y, Coothankandaswamy V, Mahdi F, Jekabsons MB, Gerwick WH, et al. Kalkitoxin inhibits angiogenesis, disrupts cellular hypoxic signaling, and blocks mitochondrial electron transport in tumor cells. Mar Drugs. 2015;13(3):1552-1568. https://doi.org/10.3390/md13031552
  24. LePage KT, Goeger D, Yokokawa F, Asano T, Shioiri T, Gerwick WH, et al. The neurotoxic lipopeptide kalkitoxin interacts with voltage-sensitive sodium channels in cerebellar granule neurons. Toxicol Lett. 2005;158(2):133-139. https://doi.org/10.1016/j.toxlet.2005.03.007
  25. White JD, Xu Q, Lee CS, Valeriote FA. Total synthesis and biological evaluation of (+)-kalkitoxin, a cytotoxic metabolite of the cyanobacterium Lyngbya majuscula. Org Biomol Chem. 2004;2(14):2092-2102. https://doi.org/10.1039/b404205k
  26. Ahmed AS, Sheng MH, Lau KW, Wilson SM, Wongworawat MD, Tang X, et al. Calcium released by osteoclastic resorption stimulates autocrine/paracrine activities in local osteogenic cells to promote coupled bone formation. Am J Physiol Cell Physiol. 2022;322(5):C977-C990. https://doi.org/10.1152/ajpcell.00413.2021
  27. Sapkota M, Shrestha SK, Yang M, Park YR, Soh Y. Aloe-emodin inhibits osteogenic differentiation and calcification of mouse vascular smooth muscle cells. Eur J Pharmacol. 2019;865:172772.
  28. Price PA, Chan WS, Jolson DM, Williamson MK. The elastic lamellae of devitalized arteries calcify when incubated in serum: evidence for a serum calcification factor. Arterioscler Thromb Vasc Biol. 2006;26(5):1079-1085. https://doi.org/10.1161/01.ATV.0000216406.44762.7c
  29. Demer LL. Cholesterol in vascular and valvular calcification. Circulation. 2001;104(16):1881-1883. https://doi.org/10.1161/circ.104.16.1881
  30. Tyson J, Bundy K, Roach C, Douglas H, Ventura V, Segars MF, et al. Mechanisms of the osteogenic switch of smooth muscle cells in vascular calcification: WNT signaling, BMPs, mechanotransduction, and EndMT. Bioengineering (Basel). 2020;7(3):88.
  31. Qian Y, Li L, Sun Z, Liu J, Yuan W, Wang Z. A multi-omics view of the complex mechanism of vascular calcification. Biomed Pharmacother. 2021;135:111192.
  32. Li L, Yang M, Shrestha SK, Kim H, Gerwick WH, Soh Y. Kalkitoxin reduces osteoclast formation and resorption and protects against inflammatory bone loss. Int J Mol Sci. 2021;22(5):2303.
  33. Shrestha SK, Min KH, Kim SW, Kim H, Gerwick WH, Soh Y. Kalkitoxin: a potent suppressor of distant breast cancer metastasis. Int J Mol Sci. 2023;24(2):1207.
  34. Du Y, Wang Y, Wang L, Liu B, Tian Q, Liu CJ, et al. Cartilage oligomeric matrix protein inhibits vascular smooth muscle calcification by interacting with bone morphogenetic protein-2. Circ Res. 2011;108(8):917-928. https://doi.org/10.1161/CIRCRESAHA.110.234328
  35. Shimizu T, Tanaka T, Iso T, Matsui H, Ooyama Y, Kawai-Kowase K, et al. Notch signaling pathway enhances bone morphogenetic protein 2 (BMP2) responsiveness of Msx2 gene to induce osteogenic differentiation and mineralization of vascular smooth muscle cells. J Biol Chem. 2011;286(21):19138-19148. https://doi.org/10.1074/jbc.M110.175786
  36. Broege A, Pham L, Jensen ED, Emery A, Huang TH, Stemig M, et al. Bone morphogenetic proteins signal via SMAD and mitogen-activated protein (MAP) kinase pathways at distinct times during osteoclastogenesis. J Biol Chem. 2013;288(52):37230-37240. https://doi.org/10.1074/jbc.M113.496950
  37. Lin ME, Chen T, Leaf EM, Speer MY, Giachelli CM. Runx2 expression in smooth muscle cells is required for arterial medial calcification in mice. Am J Pathol. 2015;185(7):1958-1969. https://doi.org/10.1016/j.ajpath.2015.03.020
  38. Steitz SA, Speer MY, Curinga G, Yang HY, Haynes P, Aebersold R, et al. Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers. Circ Res. 2001;89(12):1147-1154. https://doi.org/10.1161/hh2401.101070
  39. Chen L, Jacquet R, Lowder E, Landis WJ. Refinement of collagen-mineral interaction: a possible role for osteocalcin in apatite crystal nucleation, growth and development. Bone. 2015;71:7-16. https://doi.org/10.1016/j.bone.2014.09.021
  40. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17-29. https://doi.org/10.1016/S0092-8674(01)00622-5