• Title/Summary/Keyword: Dental scanner

Search Result 267, Processing Time 0.021 seconds

Comparison of three-dimensional adaptation as per the rinsing time of temporary crown manufactured using a digital light processing printer (디지털 광 조명 방식으로 제작한 임시 크라운의 세척 시간에 따른 3차원 적합도 평가)

  • Lee, Beom-Il;You, Seung-Gyu;You, Seung-Min;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.334-340
    • /
    • 2020
  • Purpose: This study aimed to compare three-dimensional adaptation with the rinsing time of the temporary crown produced using the digital light processing method. Methods: The maxillary right first molar abutment was scanned with a dental scanner. A temporary crown was designed with the scanned abutment. The designed crown was made of 10 temporary crowns using a digital light processing printer. The crowns were divided into the 5-minute and 10-minute rinsing groups; 5 temporary crown washes were performed for each group. In order to obtain the internal data, each group was scanned for a temporary crown. The three-dimensional fit was measured by superimposing the scanned internal surface data and the abutment data. The average comparison of three-dimensional adaptation was analyzed using the Mann-Whitney U test. Results: The 5-minute rinsing group showed a significantly higher adaptation of 71.42±3.08 ㎛ as compared to the 10-minute rinsing group (67.52±0.92 ㎛) (p<0.05). Conclusion: When making a temporary crown with a digital light processing method, a rinsing time of 10 minutes is appropriate.

Evaluating Measurements: A Comparative Study of Digital and Plaster Models for Orthodontic Applications in Mixed Dentition

  • Seo Young Shin;Yong Kwon Chae;Ko Eun Lee;Mi Sun Kim;Ok Hyung Nam;Hyo-seol Lee;Sung Chul Choi
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.1
    • /
    • pp.55-65
    • /
    • 2024
  • This study aimed to assess the accuracy of tooth widths, intermolar widths, and arch lengths acquired through two intraoral scanners, including iTero Element Plus Series (Align Technology, Santa Clara, CA, USA) and Trios 4 (3Shape, Copenhagen, Denmark), specifically on mixed dentition. A total of 30 subjects were divided into 2 groups, each undergoing both alginate impressions and intraoral scanning using either the iTero or Trios scanner. The plaster models were measured with a caliper, while the digital models were measured virtually. In the iTero group, all tooth width measurements exhibited differences compared to the plaster values, except for maxillary left lateral incisors (p = 0.179), mandibular right (p = 0.285), and left (p = 0.073) central incisors. The Trios group did not display significant differences in any of the tooth width measurements. Intermolar width comparisons for both groups indicated differences, except for mandibular primary canine to primary canine values (p = 0.426) in the iTero group. Regarding arch length, the mandibular anterior, maxillary right, and left arch lengths in the iTero group demonstrated larger caliper values than those of iTero. Conversely, in the Trios group, all parameters showed smaller caliper values, especially in upper anterior, maxillary right, mandibular right, and mandibular left arch lengths with significance (p = 0.027, 0.007, 0.003, and 0.047, respectively). Despite the differences between the two groups, digital models might be clinically suitable alternatives for plaster models. Pediatric dentists should carefully assess these differences, as a comprehensive evaluation would result in precise orthodontic treatment planning and favorable outcomes for young patients with mixed dentition.

Effect of cement space on marginal and internal fit of a zirconia core fabricated using by additive manufacturing (시멘트 공간이 적층 가공으로 제작한 지르코니아 하부구조물의 변연 및 내면 적합도에 미치는 영향)

  • Ji-Won Min;Se-Yeon Kim;Jae-Hong Kim
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Purpose: The goal of this study was to determine the clinical acceptability of various cement space settings for the marginal and internal fit of a zirconia core manufactured using additive manufacturing. Methods: The maxillary right incisor served as the master model. After scanning the maxillary right incisor with a dental 3D (three-dimensional) scanner, the stereo lithography file was created using different cement space settings of 40, 120, and 200 ㎛ using computer-aided design software (Dental System 2018; 3Shape). The marginal and internal fit of the 3 groups were determined using the silicon replica technique. Measurement points were divided into the following three categories: margin, axial wall, and incisal. To ensure more accurate measurements, these three measurement points were divided into 8 points. The Shapiro-Wilk, one-way ANOVA, and Tukey's honestly significant difference test (for all tests α=0.05) were the statistical analyses that were included in the study. Results: The CS (cement space)-200 group had better marginal and internal fit than the CS-40 and CS-120 groups, and there were statistically significant differences at the marginal and incisal points, except for the axial wall points. CS-200 group, both marginal and internal fit were within 120 ㎛, which is the clinically acceptable value. Conclusion: This study suggests that a 200 ㎛ cement space setting is ideal for optimal marginal and internal fit of 3D-printed ceramic crowns.

Accuracy and Precision of Three-dimensional Imaging System of Children's Facial Soft Tissue (소아 얼굴 연조직의 3차원 입체영상의 정확성 및 재현성 평가)

  • Choi, Kyunghwa;Kim, Misun;Lee, Koeun;Nam, Okhyung;Lee, Hyo-seol;Choi, Sungchul;Kim, Kwangchul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.1
    • /
    • pp.17-24
    • /
    • 2020
  • The purpose of this study was to evaluate the accuracy and precision of the three-dimensional (3D) imaging system of children's facial soft tissue by comparing linear measurements. The subjects of the study were 15 children between the ages of 7 and 12. Twenty-three landmarks were pointed on the face of each subject and 16 linear measurements were directly obtained 2 times using an electronic caliper. Two sets of 3D facial images were made by the 3D scanner. The same 16 measurements were obtained on each 3D image. In the accuracy test, the total average difference was 0.9 mm. The precision of 3D photogrammetry was almost equivalent to that of direct measurement. Thus, 3D photogrammetry by the 3D scanner in children had sufficient accuracy and precision to be used in clinical setting. However, the 3D imaging system requires the subject's compliance for exact images. If the clinicians provide specific instructions to children while obtaining 3D images, the 3D device is useful for investigating children's facial growth and development. Also the device can be a valuable tool for evaluating the results of orthodontic and orthopedic treatments.

Precision Evaluation of Scanning the Digital Dental Abutment Impression and Dental Gypsum Model according to 3-dimensional Superimposing Different Skills (3차원 중첩 기술 차이에 따른 디지털 치과용 지대치 인상체 및 경석고 모형의 스캐닝 정밀도 평가)

  • Jeon, Jin-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.639-645
    • /
    • 2018
  • The objective of this research was to compare the precision of scanning the digital abutment impression and gypsum model according to 3-dimensional superimposing different skills. There were made with the abutment impression and gypsum model of a maxillary 1st premolar, blue light scanner scanned to obtain the stereolithography (STL) file. After the same process was performed 10 more times without moving them on the scanner table about the abutment impression and gypsum model, respectively (n=11, per types). By superimposing the date of scanning the abutment impression and gypsum model used with no control and best-fit-alignment skills, 10 color-difference maps and root mean square (RMS) data were obtained. The independent t-test was performed to compare RMS data between the each other groups (${\alpha}=0.05$). In the scanning abutment impressions, $RMS{\pm}SD$ of no control, best-fit-alignment showed $6.86{\pm}0.94$, $5.04{\pm}0.24$. in the scanning gypsum model, $4.98{\pm}1.16$, $3.39{\pm}0.07$, all groups showed a significant difference (P<0.001). Trough the this study's result, not only best-fit-alignment but no control is used with digital dental computer-aided design/computer-aided manufacturing (CAD/CAM) research and clinical part.

Accuracy of several implant bite registration techniques: an in-vitro pilot study

  • Park, Do-Hyun;Park, Ji-Man;Choi, Jae-Won;Kang, Eun-Sook;Bae, Eun-Bin;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.341-349
    • /
    • 2017
  • PURPOSE. This study evaluated the accuracies of different bite registration techniques for implant-fixed prostheses using three dimensional file analysis. MATERIALS AND METHODS. Implant fixtures were placed on the mandibular right second premolar, and the first and second molar in a polyurethane model. Aluwax (A), Pattern Resin (P), and Blu-Mousse (B) were used as the bite registration materials on the healing abutments (H) or temporary abutments (T). The groups were classified into HA, HP, HB, TA, TP, and TB according to each combination. The group using the bite impression coping was the BC group; impression taking and bite registration were performed simultaneously. After impression and bite taking, the scan bodies were connected to the lab analogs of the casts. These casts were scanned using a model scanner. The distances between two reference points in three-dimensional files were measured in each group. One-way ANOVA and Duncan's test were used at the 5% significance level. RESULTS. The smallest distance discrepancy was observed in the TB group using the temporary abutments. The Blu-Mousse and HP groups showed the largest distance discrepancy. The TB and BC groups showed a lower distance discrepancy than the HP group (P=.001), and there was no significant difference between the groups using the temporary abutments and healing abutments (P>.05). CONCLUSION. Although this study has limitations as an in-vitro investigation, the groups using the temporary abutments to hold the Blu-Mousse record and bite impression coping showed greater accuracy than the group using the healing abutments to hold the pattern resin record.

Implant supported prosthesis with high performance polymers using a double scanning method (Double Scanning에 의한 고성능 중합체를 이용한 임플란트 지지 고정성 보철물 수복 증례)

  • Kang, Kyeong-Hwan;Park, Jin-Hong;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.305-310
    • /
    • 2017
  • Nowadays, the development of dental scanner and CAD/CAM technology can facilitate the fabrication of hybrid prosthesis. Double scanning technique, scanning a trial prosthesis and master model, made it possible to realize virtual design and simplify the laboratory work. Instead of using the metal or zirconia framework with composite, ceramic or denture tooth, the new high performance polymer Polyetherketoneketone (Pekkton, Cendres+$M{\acute{e}}taux$, Biel, Switzerland) as a framework with Polymethyl methacrylate (PMMA) veneering teeth (Visio-lign, Bredent, Senden, Germany) was used in this case. This case report showed an acceptable treatment outcome and satisfaction of patient using Pekkton and Visio-lign. However, long term clinical evaluation is needed.

The effectiveness of a pre-procedural mouthrinse in reducing bacteria on radiographic phosphor plates

  • Hunter, Allison;Kalathingal, Sajitha;Shrout, Michael;Plummer, Kevin;Looney, Stephen
    • Imaging Science in Dentistry
    • /
    • v.44 no.2
    • /
    • pp.149-154
    • /
    • 2014
  • Purpose: This study assessed the effectiveness of three antimicrobial mouthrinses in reducing microbial growth on photostimulable phosphor (PSP) plates. Materials and Methods: Prior to performing a full-mouth radiographic survey (FMX), subjects were asked to rinse with one of the three test rinses ($Listerine^{(R)}$, $Decapinol^{(R)}$, or chlorhexidine oral rinse 0.12%) or to refrain from rinsing. Four PSP plates were sampled from each FMX through collection into sterile containers upon exiting the scanner. Flame-sterilized forceps were used to transfer the PSP plates onto blood agar plates (5% sheep blood agar). The blood agar plates were incubated at $37^{\circ}C$ for up to 72 h. An environmental control blood agar plate was incubated with each batch. Additionally, for control, 25 gas-sterilized PSP plates were plated onto blood agar and analyzed. Results: The mean number of bacterial colonies per plate was the lowest in the chlorhexidine group, followed by the Decapinol, Listerine, and the no rinse negative control groups. Only the chlorhexidine and Listerine groups were significantly different (p=0.005). No growth was observed for the 25 gas-sterilized control plates or the environmental control blood agar plates. Conclusion: The mean number of bacterial colonies was the lowest in the chlorhexidine group, followed by the Decapinol, Listerine, and the no rinse groups. Nonetheless, a statistically significant difference was found only in the case of Listerine. Additional research is needed to test whether a higher concentration (0.2%) or longer exposure period (two consecutive 30 s rinse periods) would be helpful in reducing PSP plate contamination further with chlorhexidine.

Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems

  • Kim, Dong-Yeon;Kim, Eo-Bin;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.463-469
    • /
    • 2017
  • PURPOSE. To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. MATERIALS AND METHODS. One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (${\alpha}=.05$). RESULTS. The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups (P<.001). In the marginal area where pontic was present, the largest gap was $149.39{\pm}42.30{\mu}m$ in the AM group, and the lowest gap was $24.40{\pm}11.92{\mu}m$ in the SM group. CONCLUSION. Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically.

A STUDY ON THE RADIOPACITY OF ESTHETIC DENTAL MATERIALS USING IN THE PEDIATRIC DENTISTRY (소아용 심미수복재의 방사선 불투과성에 관한 연구)

  • Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.82-86
    • /
    • 2001
  • The aim of this study was to investigate the level of radiopacity of esthetic dental restorative materials and determine the optimum level of radiopacity in pediatric dentistry. Disks of 8 dental restorative material groups as the experimental group, 7mm in diameter and 2mm thick, were radiographed with intact human deciduous teeth and aluminum stepwedge standard. Radiopacity was evaluated with an image analysis program following the digitization of the radiographs using a flatbed scanner with transparency unit. All materials and tooth structure also the significant difference except FP, VB, VM. For the radiopacity of esthetic restorative dental materials to exceed that of enamel, it should be greater than 1.7mm of equivalent thickness of aluminum.

  • PDF