• Title/Summary/Keyword: Dental abrasive

Search Result 46, Processing Time 0.026 seconds

Grindability of Ti-Xwt%Cu Alloys for Dental Applications (치과용 Ti-Xwt%Cu 합금의 연삭성)

  • Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.31-36
    • /
    • 2009
  • This study evaluated the grindability of series of Ti-Cu alloys in order to develop a Ti alloy with better grindability than commercially pure titanium(CP Ti). Experimental Ti-Xwt%Cu alloys(X=2, 5, 10) were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speed(15000, 30000rpm) by applying a force(250, 300gr). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 2 minutes. Data were compared to those for CP Ti and Ti-6wt%Al-4wt%V alloy. From results, It was observed that the grindability of Ti-Cu alloys increased with an increase in the Cu concentration compared to CP Ti, particularly the 10wt%Cu alloy exhibited the highest grindability at all speeds. By alloying with Cu, the Ti exhibited better grindability at high speed. The continuous precipitation of $Ti_2Cu$ among the ${\alpha}$-matrix grains made this material less ductile and facilitated more effective grinding because small segments more readily formed. The Ti-10wt%Cu alloy has a great potential for use as a dental machining alloy.

  • PDF

Wear of contemporary dental composite resin restorations: a literature review

  • Dimitrios Dionysopoulos;Olga Gerasimidou
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.18.1-18.13
    • /
    • 2021
  • Composite resins are the most commonly used dental restorative materials after minimally invasive dental procedures, and they offer an aesthetically pleasing appearance. An ideal composite restorative material should have wear properties similar to those of tooth tissues. Wear refers to the damaging, gradual loss or deformation of a material at solid surfaces. Depending on the mechanism of action, wear can be categorized as abrasive, adhesive, fatigue, or corrosive. Currently used composite resins cover a wide range of materials with diverse properties, offering dental clinicians multiple choices for anterior and posterior teeth. In order to improve the mechanical properties and the resistance to wear of composite materials, many types of monomers, silane coupling agents, and reinforcing fillers have been developed. Since resistance to wear is an important factor in determining the clinical success of composite resins, the purpose of this literature review was to define what constitutes wear. The discussion focuses on factors that contribute to the extent of wear as well as to the prevention of wear. Finally, the behavior of various types of existing composite materials such as nanohybrid, flowable, and computer-assisted design/computer-assisted manufacturing materials, was investigated, along with the factors that may cause or contribute to their wear.

Friction and Wear Behaviors of Conventional Composite Resins (재래형 콤포짓트 레진의 마찰 . 마멸거동)

  • 임정일;서세광;김교한;김석삼
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.166-172
    • /
    • 2000
  • The friction and wear characteristics of dental composite resins such as Charisma, Elitefil, TPH and Veridonfil were investigated. Furthermore, The surface characteristics examination, the analysis of contents of filler, Victors hardness and fracture toughness measurement of composite resins were preformed. The wear test applied ball to move reciprocationally on flat wear tester at room temperature. Microstructure of surfaces and worn surfaces were observed by SEM. Experimental results indicate that the friction coefficient of TPH was quite low, and the wear resistance of TPH was better than that of Charisma, Elitefil or Veridonfil at the same condition. The main wear mechanism was found to be plastic flow and abrasive wear by failure of filler's bond to the matrix.

The Endotoxin Assay of Contaminated Titanium Implants following Various Techniques of Detoxification (오염된 임프란트 표면의 해독 방법에 따른 내독소 제거 효과에 관한 연구)

  • Park, Joong-Hee;Lim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.71-81
    • /
    • 2004
  • Peri-implantitis could be the result of biomechanical and occlusal overload as well as microbiologic invasion. The dental implant may be more susceptible to dental plaque than the natural tooth, as the predictability of a stable soft tissue attachment complex has not yet been confirmed. With the development of peri-implantitis, the implant surface would be exposed to the oral environment and becomes coated with bacteria. The objective of therapy for this condition is to regain integration of the implant with bone. Since fibroblast adherence to surfaces is impeded by endotoxin, it would seem that decontamination would be desirable to obtain maximum osseointegration. The purpose of this study was to determine whether various chemotherapeutic and mechanical treatments(distilled water, air-powder abrasive, hypersaturated citric acid, tetracycline) can detoxify contaminated titanium implant surface by means of kinetic LAL test. Experimental rough surface titanium disks were fabricated. All of them were divided into two groups(A.a group and P.g group) and each contaminated by A. actinomycetemcomitans and P. gingivalis suspension. Contaminated disks were treated with distilled water, air-powder abrasive, citric acid and tetracycline, and then all disks were placed into LPS-free water for elution. The results were as follows : 1. In A.a group, LPS elute level of all test groups were significantly lower than control group(p<0.05). 2. In A.a group, LPS elute level of test 2, test 3 and test4 groups were significantly lower than that of control group(p<0.05). But, among the test 2, test 3, test4 groups, the significant differences were not detected. 3. In P.g group, LPS elute level of test 2, test 3 and test 4 groups were lower than that of control group(p<0.05). But, among the test groups, the significant differences were not detected. From the result of this study, it would be concluded that air-powder abrasive, hypersaturated citric acid and tetracycline treatments may be effective at reducing endotoxin level on rough titanium implant surfaces, and can be clinically used. But the treatments in peri-implantitis differentially impact osseointegration making one method clinically superior. To gain this knowledges, further molecular biologic and histopathologic studies should be developed.

Grindability of Ti-10%Zr-X%Cr(X=0,1,3) Alloys for Dental Applications (치과용 Ti-10%Zr-X%Cr(X=0,1,3)합금의 연삭성)

  • Jung, Jong-Hyun;Shin, Jae-Woo
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Purpose: The grindability of Ti-10%Zr-X%Cr(X=0,1,3) alloys in order to develop Ti alloys for dental applications with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-10%Zr-X%Cr(X=0,1,3) alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at one of the four rotational speeds of the wheel (12000, 18000, 25000 or 30000rpm) by applying a force(100gf). Grindability was evaluated by measuring the amount of metal volume removed per minute(grinding rate) and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared the results with those of cp-Ti(commercially pure titanium) Results: It was observed that the grindability of Ti-10%Zr-X%Cr(X=0,1,3) alloys increased with an increase in the Cr concentration. More, they are higher than cp-Ti, particularly the Ti-10%Zr-3%Cr alloy exhibited the highest grindability at all rotational speeds except 12000rpm. There was significant difference in the grinding rate and grinding ratio between Ti-10%Zr-3%Cr alloy and cp-Ti at all rotational speeds(p<0.05). Conclusion: The Ti-10%Zr-3%Cr alloy exhibited better grindability at high rotational speeds, great potential for use as a dental machining alloy.

Wear evaluation of CAD-CAM dental ceramic materials by chewing simulation

  • Turker, Izim;Kursoglu, Pinar
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.281-291
    • /
    • 2021
  • PURPOSE. To evaluate the wear of computer-aided design/computer-aided manufacturing (CAD-CAM) dental ceramic materials opposed by enamel as a function of increased chewing forces. MATERIALS AND METHODS. The enamel cusps of healthy human third molar teeth (n = 40) opposed by materials from CAD-CAM dental ceramic groups (n = 10), including Vita Enamic® (ENA), a polymer-infiltrated ceramic network (PICN); GC Cerasmart® (CERA), a resin nanoceramic; Celtra® Duo (DUO), a zirconia-reinforced lithium silicate (ZLS) ceramic; and IPS e.max ZirCAD (ZIR), a polycrystalline zirconia, were exposed to chewing simulation (1,200,000 cycles; 120 N load; 1 Hz frequency; 0.7 mm lateral and 2 mm vertical motion). The wear of both enamel cusps and materials was quantified using a 3D laser scanner, and the wear mechanisms were evaluated by scanning electron microscopy (SEM). The results were analysed using Welch ANOVA and Kruskal Wallis test (α = .05). RESULTS. ZIR showed lower volume loss (0.02 ± 0.01 mm3) than ENA, CERA and DUO (P = .001, P = .018 and P = .005, respectively). The wear of cusp/DUO [0.59 mm3 (0.50-1.63 mm3)] was higher than cusp/CERA [0.17 mm3 (0.04-0.41 mm3)] (P = .007). ZIR showed completely different wear mechanism in SEM. CONCLUSION. Composite structured materials such as PICN and ZLS ceramic exhibit more abrasive effect on opposing enamel due to their loss against wear, compared to uniform structured zirconia. The resin nano-ceramic causes the lowest enamel wear thanks to its flexible nano-ceramic microstructure. While zirconia appears to be an enamel-friendly material in wear volume loss, it can cause microstructural defects of enamel.

Grindability of Cast Ti-X%Zr(X=10,20,40) Alloys for Dental Applications (치과주조용 Ti-X%Zr(X=10,20,40)합금의 연삭성)

  • Jung, Jong-Hyun;Noh, Hyeong-Rok
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2011
  • Purpose: The grindability of binary Ti-X%Zr(X=10,20,40) alloys in order to develop a Ti alloy with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-Zr alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speeds(12000,18000,25000 or 30000rpm) by applying a force(200gr). Grinding rate was evaluated by measuring the amount of metal volume removed after grinding for 1 minute and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared to those for cp Ti(commercially pure titanium) and Ti-6%Al-4%V alloy were used controls. Results: It was observed that the grindability of Ti-Zr alloys increased with an increase in the Zr concentration. More, they are higher than cp Ti, particularly the Ti-20%Zr alloy exhibited the highest grindability at all circumferential speeds. There was significant difference in the grinding rate and grinding ratio between Ti-20%Zr alloy and cp Ti at any speed(p<0.05). Conclusion: By alloying with Zr, the Ti exhibited better grindability at all circumferential speeds. the Ti-20%Zr alloy has a great potential for use as a dental machining alloy.

THE EFFECT OF FLUORIDE PRETREATMENT ON SHEAR BOND STRENGTH BETWEEN ENAMEL AND FISSURE SEALANT (불소 전처리가 법랑질과 치면열구전색재의 전단결합강도에 미치는 영향)

  • Ryu, Phil-Jun;Jang, Ki-Taek;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.522-529
    • /
    • 2001
  • This study seeks to know the effect of fluoride topical application on the shear bond strength between enamel and fissure sealant. On group 1,2,3,4, Teethmate A(unfilled sealant) and on group 5,6,7,8 Ultraseal XT(filled sealant) were used. Group 1 and 5 were not pre-treated with fluoride and group 2 and 6 were pre-treated with 1.23% APF for 4minutes. Group 3 and 7 were pretreated with 2.0% NaF for 4 minutes. and group 4 and 8 were pumiced with abrasive containing fluoride for 10 seconds. Prepared specimens were acid etched for 30 seconds using 35% phosphoric acid, and then sealant was cured to the specimen using a 3mm diameter by 2mm height mold. They went through thermocycling. Its shear bond strength was measured, and then acid etched both groups that were pretreated with fluoride and that were not pretreated with fluoride. Then we examined the surface of the specimen with EM and came up with these results. In groups using unfilled sealant(group 1,2,3.4) there were no significant differences between oops pretreated with fluoride and groups not pretreated with fluoride. In groups using filled sealant(group 5,6,7,8), groups 6 and 7(treated with 1.23% APF 2.0% NaF respectively) showed significantly lower shear bond strength, compared to group 5 (not pretreated with fluoride) and group 8 (pumiced with abrasive containing fluoride) (p<0.05).

  • PDF

Friction Characteristics of Automotive Friction Materials with Ceramic Powder Contents (자동차용 마찰재에 함유된 세라믹분말의 함량에 따른 마찰특성)

  • Lee, Yong-Jin;Ryu, Jae-Kyung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.403-406
    • /
    • 2009
  • The friction characteristics of automotive brake friction materials that contained different ceramic content were investigated. Several kinds of raw materials, such as resin-based binder, reinforcing fiber, friction restraint, abrasive, and filling materials were mixed, pressed, and heated in order to make the brake friction materials. The contents of SiC and $BaSO_4$ changed from 5 vol% to 20 vol%, respectively. In addition to this, the content of $Al_2O_3$ adjusted from 1 vol% to 16 vol%. The surface morphology of the SiC containing sample appeared rough while more debris was observed when the contents of SiC increased. This implies that the SiC containing brake composite was not adequate for the automobile. However, the relatively smooth surface was observed in samples that contained the $Al_2O_3$. But the roughness was low with a content of 11 vol% $Al_2O_3$ compared to the other samples. This is consistent with the abrasive properties of the samples. In the case of $BaSO_4$ containing samples, the smoothes surface was observed in the contents of 15 vol% $BaSO_4$. Thus, it was concluded that the 11 vol% $Al_2O_3$ and 15 vol% $BaSO_4$ containing composite would be the optimum content for the brake composite. Similar to the results of the surface morphology, the abrasion resistance consistently decreased when the content of SiC increased. On the contrary, the sample that contained 11 vol% $Al_2O_3$ and 15 vol% $BaSO_4$ showed the highest abrasion resistance compared to the other samples.

Comparison of Coffee Stain Removal Effects of Commercial Whitening Toothpaste in Sound and Demineralized Teeth In Vitro

  • Ji-Hyun Min
    • Journal of dental hygiene science
    • /
    • v.23 no.3
    • /
    • pp.236-244
    • /
    • 2023
  • Background: The size of the tooth whitening market and toothpaste market is increasing worldwide. The purpose of this in vitro study is to confirm and compare the coffee stain removal effects of commercial whitening toothpaste in sound and demineralized teeth, respectively. Methods: A total of 112 flat permanent bovine teeth specimens were manufactured. Half of the surface of the specimen was coated with an acid-resistant varnish and deposited in an artificial demineralizing solution for 65 hours. The varnish applied to half of the specimen was removed and deposited in a coffee solution for 96 hours to induce coloring. Two control and five experimental group toothpastes for teeth whitening were selected and the main components were investigated. Toothbrushing was performed 50, 100, and 150 times for each toothpaste group. A total of four images were obtained: before the start and after 50, 100, and 150 times of brushing to obtain the lightness (L*) values of the sound and the demineralized tooth surfaces. The difference in the average value between toothpaste groups at each treatment period was analyzed by one-way ANOVA. The difference in the L* average value according to the number of the brushing was analyzed by repeated measure ANOVA. Results: All toothpastes in the seven groups contained abrasive agents and had different ingredients for each product. Compared to before brushing, the L* value changed significantly in all toothpaste groups after brushing 50 times (p<0.05). This was common in both the sound and demineralized teeth surfaces. Demineralized teeth had significantly lower L* values at all brushing times than that in sound teeth (p<0.05). Conclusion: The effect of whitening teeth was different for each toothpaste. Demineralized teeth were more likely to cause coloration than sound teeth, and the coloration was not removed well.