• Title/Summary/Keyword: Density variation rate

Search Result 279, Processing Time 0.023 seconds

Numerical Analysis of the Sessile Droplet Evaporation on Heated Surfaces (가열된 표면에 고착된 액적의 증발 특성에 관한 수치해석 연구)

  • Jeong, Chan Ho;Lee, Hyung Ju;Yun, Kuk Hyun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Droplet evaporation has been known as a common phenomenon in daily life, and it has been widely used for many applications. In particular, the influence of the different heated substrates on evaporation flux and flow characteristics is essential in understanding heat and mass transfer of evaporating droplets. This study aims to simulate the droplet evaporation process by considering variation of thermal property depending on the substrates and the surface temperature. The commercial program of ANSYS Fluent (V.17.2) is used for simulating the conjugated heat transfer in the solid-liquid-vapor domains. Moreover, we adopt the diffusion-limited model to predict the evaporation flux on the different heated substrates. It is found that the evaporation rate significantly changes with the increase in substrate temperature. The evaporation rate substantially varies with different substrates because of variation of thermal property. Also, the droplet evaporates more rapidly as the surface temperature increases owing to an increase in saturation vapor pressure as well as the free convection effect caused by the density gradient.

Error Rate Performance of FH/MFSK Signal with Thermal Noise in the Partial Band Jamming Environments (부분대역 재밍 환경하에서 열잡음을 고려한 FH/MFSK 신호의 오솔특성)

  • 강찬석;안중수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 1993
  • Performance analysis is very important to transmit the high quality information and to construct the optimal system for the minimze the noise from the channel of spread spectrum system. In this paper the error rate performance is analyzed with computer simulation in noncoherent frequency hopping M-qry frequency shift keying(FH/MFSk) systems with regard to thermal noise under the partial band jamming environments. AS a result, in case the thermal noise is disregarded, bit error probability of system in jamming fraction ρ and Eb/Nj(bit energy to jamming power density) is reduced with the increase of K and in worst case 32FSK system is better than 2FSK system by 3.23dB with the variatio of Eb/Nj. In case thermal noise is considered, bit error probability of system by 3.23dB with the variation of Eb/Nj. In case thermal noise is considered, bit error probability of system are reduced with the increase of K and Eb/No(bit energy to thermal noise density). Bit error probability in connection with worst case ρ is not largely influenced form over the 14dB to K=1 and 8dB to K=5 accordingly thermal noise disregarding. These results may be useful for avoiding the common vulnerabilities when the spread spectrum system is designed.

  • PDF

Thermal Oxidation Behavior and Electrical Characteristics of Silicon depending on the Crystal Orientation (결정 배향에 따른 Si의 열산화 거동 및 전기적 특성)

  • 우현정;최두진;양두영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.753-758
    • /
    • 1994
  • (100) Si and 4$^{\circ}$off (100) Si were oxidized in dry oxygen, and the differences in thermal oxidation behavior and electrical characteristics between two specimens were investigated. Ellipsometer measurements of the oxide thickness produced by oxidation in dry oxygen from 1000 to 120$0^{\circ}C$ showed that the oxidation rates of the 5$^{\circ}$ off (100) Si were more rapid than those of the (100) Si and the differences between them decreased as the oxidation temperature increased. The activation energies based on the parabolic rate constant, B for (100) and 4$^{\circ}$off (100) Si were 25.8, 28.6 kcal/mol and those on the linear rate constant, B/A were 56.8, 54.9 kcal/mol, respectively. Variation of C-V characteristics with the oxidation temperature showed that the flat band voltages were shifted positively and surface state charge densities decreased as the oxidation temperature increased, and the surface state charge density of the 4$^{\circ}$off (100) Si was lower than that of the (100) Si. Also considerable decrease in the density of oxidation induced stacking faults (OSF) for the 4$^{\circ}$off (100) Si was observed through optical microscopy after preferentially etching off the oxide layer.

  • PDF

The Linear Thermal Expansion Measurements and Estimations for UO2 and (U1-yCey)O2 Pellet (UO2 및 (U1-yCey)O2 소결체의 열팽창 측정 및 평가)

  • Kim, Dong-Joo;Kim, Yong-Soo;Lee, Young-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.346-351
    • /
    • 2005
  • The linear thermal expansions of $UO_2$ and $(U_{1-y}Ce_y)O_2$ pellet were measured from room temperature to $1400^{\circ}C$ as a function of Ce contents (0, 7.63, 14.84, and $21.68 mol\%$) by using the TMA(Thermo-Mechanical Analysis) method. From the measured data, the linear thermal expansion rate, the coefficient of linear thermal expansion and density variation with temperature were calculated, and the best-fitted temperature-dependent equations were recommended. It was shown that the rate and coefficient of $(U_{1-y}Ce_y)O_2$ thermal expansion increased and the density decreased with increasing Ce contents.

Chemical Mechanical Polishing Characteristics of BTO Thin Film for Vertical Sidewall Patterning of High-Density Memory Capacitor (고집적 메모리 커패시터의 Vertical Sidewall Patterning을 위한 BTO 박막의 CMP 특성)

  • Ko, Pil-Ju;Park, Sung-Woo;Lee, Kang-Yeon;Lee, Woo-Sun;Seo, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.116-121
    • /
    • 2006
  • Most high-k materials are well known not to be etched easily, Some problems such as low etch rate poor sidewall angle, plasma damage, and process complexity were emerged from the high-density DRAM fabrication. Chemical mechanical polishing (CMP) by a damascene process was proposed to pattern this high-k material was polished with some commercial silica slurry as a function of pH variation. Sufficient removal rate with adequate selectivity to realize the pattern mask of tera-ethyl ortho-silicate (TEOS) film for the vertical sidewall angle were obtained. The changes of X-ray diffraction pattern and dielectric constant by CMP process were negligible. The planarization was also achieved for the subsequent multi-level processes. Our new CMP approach will provide a guideline for effective patterning of high-k material by CMP technique.

Manufacturing and characterization of ECR-PECVD system (ECR-PECVD 장치의 제작과 특성)

  • 손영호;정우철;정재인;박노길;황도원;김인수;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • An ECR-PECVD system with the characteristics of high ionization rat다 ability of plasma processing in a wide pressure range and deposition at low temperature was manufactured and characterized for the deposition of thin films. The system consists of a vacuum chamber, sample stage, vacuum gauge, vacuum pump, gas injection part, vacuum sealing valve, ECR source and a control part. The control of system is carried out by the microprocessor and the ROM program. We have investigated the vacuum characteristics of ECR-PECVD system, and also have diagnosed the characteristics of ECR microwave plasma by using the Langmuir probe. From the data of system and plasma characterization, we could confirmed the stability of pressure in the vacuum chamber according to the variation of gas flow rate and the effect of ion bombardment by the negative DC self bias voltage. The plasma density was increased with the increase of gas flow rate and ECR power. On the other hand, it was decreased with the increase of horizontal radius and distance between ECR source and probe. The calculated plasma densities were in the range of 49.7\times10^{11}\sim3.7\times10^{12}\textrm{cm}^{-3}$. It is also expected that we can estimate the thickness uniformity of film fabricated by the ECR-PECVD system from the distribution of the plasma density.

  • PDF

Dry etching properties of PZT thin films in $BCl_3/N_2$ plasma ($BCl_3/N_2$ 유도결합 플라즈마로 식각된 PZT 박막의 식각 특성)

  • Koo, Seong-Mo;Kim, Kyoung-Tae;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.183-186
    • /
    • 2004
  • The dry etch behavior of PZT thin films was investigated in $BCl_3/N_2$ plasma. The experiments were carried out with measuring etch rates and selectivities of PZT to $SiO_2$ as a function of gas concentration and input rf power, chamber pressure. The maximum etch rate was 126 nm/min when 30% $N_2$ was added to $BCl_3$ chemistry. Also, as input rf power increases, the etch rate of PZT thin films was increased. Langmuir probe measurement showed the noticeable influence of $BCl_3/N_2$ mixing ratio on electron temperature and electron density as input rf power increased. The variation of Cl radical density as plasma parameters changed was examined by Optical Emission Spectroscopy (OES) analysis. According to X-ray diffraction (XRD) analysis, PZT thin films were damaged in plasma and an increase in (100), (200) and (111) phases showed the improvement in structure of the PZT thin films after the $O_2$ annealing process.

  • PDF

X-Ray Diffraction line profile analysis of defects and precipitates in high displacement damage neutron-irradiated austenitic stainless steels

  • Shreevalli M.;Ran Vijay Kumar;Divakar R.;Ashish K.;Padmaprabu C.;Karthik V.;Archna Sagdeo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.114-122
    • /
    • 2024
  • Irradiation-induced defects and the precipitates in the wrapper material of the Indian Fast Breeder Test Reactor (FBTR), SS 316 are analyzed using the synchrotron source-based Angle Dispersive X-Ray Diffraction (ADXRD) technique with X-rays of energy 17.185 keV (wavelength ~0.72146 Å). The differences and similarities in the high displacement damage samples as a function of dpa (displacement per atom) and dpa rate in the range of 2.9 × 10-7- 9 × 10-7 dpa/s are studied. Ferrite and M23C6 are commonly observed in the present set of high displacement damage 40-74 dpa SS 316 samples irradiated at temperatures in the range of 400-483 ℃. Also, the dislocation density has increased as a function of the irradiation dose. The X-ray diffraction peak profile parameters quantified such as peak shift and asymmetry show that the irradiation-induced defects are sensitive to the dpa rate-irradiation temperature combinations. The increase in yield strength as a function of displacement damage is also correlated to the dislocation density.

Evaluation of Reverse Electrodialysis based on the Number of Cell Pairs and Stack Size Using Patterned Ion Exchange Membrane (패턴형 이온교환막을 이용한 스택의 셀 수 및 크기에 따른 역전기투석 성능 평가)

  • Dong-Gun Lee;Hanki Kim;Namjo Jeong;Young Sun Mok;Jiyeon Choi
    • New & Renewable Energy
    • /
    • v.19 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • Salinity gradient energy can be generated from a mixture of water streams with different salt concentrations by using reverse electrodialysis (RED). In this study, we evaluated the effect of stack size and number of cell pairs on the energy efficiency and specific energy of the RED process. Additionally, we studied the prementioned parameters to maximize the power density of RED. The performance of the RED stack which used a patterned ion exchange membrane, was evaluated as a function of stack size and feed flow rate. Moreover, it was noted that an increase in stack size increased the ion movement through the ion exchange membrane. Furthermore, an increase in feed flow rate led to a reduction in the concentration variation, resulting in an increase in OCV and power density. The energy efficiency and specific energy for 100 cells in the 10 × 10 cm2 stack were the highest at 12% and 0.05 kWh/m3, respectively, while the power density from 0.33 cm/s to 5 × 5 cm2 stack was the highest at 0.53 W/m2. The study showed that the RED performance can be improved by altering the size of the stack and the number of cell pairs, thereby positively affecting energy efficiency and specific energy.

VARIATION OF NEUTRON MODERATING POWER ON HDPE BY GAMMA RADIATION

  • Park, Kwang-June;Ju, June-Sik;Kang, Hee-Young;Shin, Hee-Sung;Kim, Ho-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • High density polyethylene (HDPE) is degraded due to a radiation-induced oxidation when it is used as a neutron moderator in a neutron counter for a nuclear material accounting of spent fuels. The HDPE exposed to the gamma-ray emitted from the fission products in a spent nuclear fuel results in a radiation-induced degradation which changes its original molecular structure to others. So a neutron moderating power variation of HDPE, irradiated by a gamma radiation, was investigated in this work. Five HDPE moderator structures were exposed to the gamma radiation emitted from a $^{60}Co$ source to a level of $10^5-10^9$ rad to compare their post-irradiation properties. As a result of the neutron measurement test with 5 irradiated HDPE structures and a neutron measuring system, it was confirmed that the neutron moderating power for the $10^5$ rad irradiated HDPE moderator revealed the largest decrease when the un-irradiated pure one was used as a reference. It implies that a neutron moderating power variation of HDPE is not directly proportional to the integrated gamma dose rate. To clarify the cause of these changes, some techniques such as a FTIR, an element analysis and a densitometry were employed. As a result of these analyses, it was confirmed that the molecular structure of the gamma irradiated HDPEs had partially changed to others, and the contents of hydrogen and oxygen had varied during the process of a radiation-induced degradation. The mechanism of these changes cannot be explained in detail at present, and thus need further study.