DOI QR코드

DOI QR Code

X-Ray Diffraction line profile analysis of defects and precipitates in high displacement damage neutron-irradiated austenitic stainless steels

  • Shreevalli M. (Homi Bhabha National Institute, Training School Complex, Anushakti Nagar) ;
  • Ran Vijay Kumar (Homi Bhabha National Institute, Training School Complex, Anushakti Nagar) ;
  • Divakar R. (Homi Bhabha National Institute, Training School Complex, Anushakti Nagar) ;
  • Ashish K. (Post Irradiation Examination Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research) ;
  • Padmaprabu C. (Homi Bhabha National Institute, Training School Complex, Anushakti Nagar) ;
  • Karthik V. (Homi Bhabha National Institute, Training School Complex, Anushakti Nagar) ;
  • Archna Sagdeo (Homi Bhabha National Institute, Training School Complex, Anushakti Nagar)
  • Received : 2023.06.09
  • Accepted : 2023.09.11
  • Published : 2024.01.25

Abstract

Irradiation-induced defects and the precipitates in the wrapper material of the Indian Fast Breeder Test Reactor (FBTR), SS 316 are analyzed using the synchrotron source-based Angle Dispersive X-Ray Diffraction (ADXRD) technique with X-rays of energy 17.185 keV (wavelength ~0.72146 Å). The differences and similarities in the high displacement damage samples as a function of dpa (displacement per atom) and dpa rate in the range of 2.9 × 10-7- 9 × 10-7 dpa/s are studied. Ferrite and M23C6 are commonly observed in the present set of high displacement damage 40-74 dpa SS 316 samples irradiated at temperatures in the range of 400-483 ℃. Also, the dislocation density has increased as a function of the irradiation dose. The X-ray diffraction peak profile parameters quantified such as peak shift and asymmetry show that the irradiation-induced defects are sensitive to the dpa rate-irradiation temperature combinations. The increase in yield strength as a function of displacement damage is also correlated to the dislocation density.

Keywords

Acknowledgement

The authors acknowledge Dr. B. Venkatraman, Director IGCAR, for the constant support and encouragement during the course of this work. Mr. Shaji Kurien, Head, PIED and Mr. C.N. Venkiteswaran, Former Head, SMFCS are gratefully acknowledged for their support in all the stages of the project. Authors gratefully acknowledge Dr. Tapas Ganguly, Head, Synchrotron Utilization Division and Dr. A.K Sinha, Former Head, Synchrotron Utilization Division for permitting to carry out investigations at the synchrotron facility. Advice and assistance in safe handling of specimen from the Radiological Safety Officers, Dr. Haridas, RRCAT and Mrs. Akila, Radio Metallurgy Laboratory, IGCAR during the course of examinations are gratefully acknowledged. Experimental support provided by RRCAT colleagues Mr. Manveer Singh and Mr. Abhay Bhisikar at Beam Line-12 is thankfully acknowledged. Support from Mr. Priyag during the experimental campaign is thankfully acknowledged. Also, SM acknowledges DAE, India for the HBNI fellowship.

References

  1. G.V.P. Reddy, V. Karthik, S. Latha, C.N. Venkiteswaran, D. Ramachandran, S. K. Albert, Core materials for sodium-cooled fast reactors: past to present and future prospects, Mater. Perform. Charact. 10 (2021) 607-657, https://doi.org/10.1520/MPC20200208. 
  2. V. Karthik, R. Kumar, A. Vijayaragavan, C.N. Venkiteswaran, V. Anandaraj, P. Parameswaran, S. Saroja, N.G. Muralidharan, J. Joseph, K.V. Kasiviswanathan, T. Jayakumar, B. Raj, Characterization of mechanical properties and microstructure of highly irradiated SS 316, J. Nucl. Mater. 439 (2013) 224-231, https://doi.org/10.1016/j.jnucmat.2012.06.006. 
  3. C.N. Venkiteswaran, V. Karthik, P. Parameswaran, N.G. Muralidharan, V. Anandaraj, S. Saroja, V. Venugopal, M. Vijayalakshmi, K.V. Kasiviswanathan, B. Raj, Study of microstructure and property changes in irradiated SS316 wrapper of fast breeder test reactor, J. ASTM Int. (JAI) 6 (2009) 1-10, https://doi.org/10.1520/JAI101991.
  4. S.J. Zinkle, P.J. Maziasz, R.E. Stoller, Dose dependence of the microstructural evolution in neutron-irradiated austenitic stainless steel, J. Nucl. Mater. 206 (1993) 266-286, https://doi.org/10.1016/0022-3115(93)90128-L. 
  5. N. Hashimoto, S.J. Zinkle, A.F. Rowcliffe, J.P. Robertson, S. Jitsukawa, Deformation mechanisms in 316 stainless steel irradiated at 60 ℃ and 330 ℃, J. Nucl. Mater. 283-287 (2000) 528-534, https://doi.org/10.1016/S0022-3115(00)00087-8. 
  6. P.J. Maziasz, Overview of microstructural evolution in neutron-irradiated austenitic stainless steels, J. Nucl. Mater. 205 (1993) 118-145, https://doi.org/10.1016/0022-3115(93)90077-C. 
  7. G.S. Was, Fundamentals of Radiation Materials Science, Springer, 2007. 
  8. M. Mamivand, Y. Yang, J. Busby, D. Morgan, Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation, Acta Mater. 130 (2017) 94-110, https://doi.org/10.1016/j.actamat.2017.03.025. 
  9. P.J. Maziasz, Formation and stability of radiation-induced phases in neutron-irradiated austenitic and ferritic steels, J. Nucl. Mater. 169 (2008) 95-115, https://doi.org/10.1016/0022-3115(89)90525-4. 
  10. L. Tan, R.E. Stoller, K.G. Field, Y. Yang, H. Nam, D. Morgan, B.D. Wirth, M. N. Gussev, J.T. Busby, Microstructural evolution of type 304 and 316 stainless steels under neutron irradiation at LWR relevant conditions, J. Miner. Met. Mater. Soc. 68 (2016) 517-529, https://doi.org/10.1007/s11837-015-1753-5. 
  11. A.F. Rowcliffe, M.L. Grossbeck, The response of austenitic steels to radiation damage, J. Nucl. Mater. 122 & 123 (1984) 181-190, https://doi.org/10.1016/0022-3115(84)90593-2. 
  12. C. Cabet, F. Dalle, E. Gaganidze, J. Henry, H. Tanigawa, Ferritic-martensitic steels for fission and fusion applications, J. Nucl. Mater. 523 (2019) 510-537, https://doi.org/10.1016/j.jnucmat.2019.05.058. 
  13. V.V. Sagaradze, S.S. Lapin, B.N. Goshchitskii, M.A. Kirk, The structural evolution of new low-activation and chromium-nickel stainless steels under high-dose irradiation up to 200 dpa, J. Nucl. Mater. 258-263 (1998) 1675-1680, https://doi.org/10.1016/S0022-3115(98)00401-2. 
  14. C. Sun, F.A. Garner, L. Shao, X. Zhang, S.A. Maloy, Influence of injected interstitials on the void swelling in two structural variants of 304L stainless steel induced by self-ion irradiation at 500 ℃, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 409 (2017) 323-327, https://doi.org/10.1016/j.nimb.2017.03.070. 
  15. M. Shreevalli, R. Vijay, D. Ramachandran, C. Padmaprabu, V. Karthik, A. Sagdeo, X-ray diffraction line profile analysis of defects in neutron-irradiated austenitic stainless steels at low displacement damage levels, J. Nucl. Mater. 577 (2023) 1-13, https://doi.org/10.1016/j.jnucmat.2023.154338. 
  16. V. Karthik, P. Visweswaran, A. Vijayraghavan, K.V. Kasiviswanathan, B. Raj, Tensile-shear correlations obtained from shear punch test technique using a modified experimental approach, J. Nucl. Mater. 393 (2009) 425-432, https://doi.org/10.1016/j.jnucmat.2009.06.027. 
  17. V. Karthik, R.V. Kumar, V. Anandaraj, C. Padmaprabu, A. Vijayaragavan, V. V. Jayaraj, C.N. Venkiteswaran, S. Kurien, D. Ramachandran, Irradiation behaviour of alloy D9 clad and wrapper in FBTR, J. Nucl. Mater. 565 (2022) 1-17, https://doi.org/10.1016/j.jnucmat.2022.153711. 
  18. V. Karthik, R.V. Kumar, A. V Kolhatkar, V. Anandraj, A. Vijayraghavan, T. Ulaganathan, C.N. Venkiteswaran, P.K. Chaurasia, S. Murugan, P. Parameswaran, S. Saibaba, Mechanical property evaluation of irradiated stainless steels using sub size and miniature specimens, in: https://hotlab.sckcen.be/proceedings, 2018. 
  19. A.K. Sinha, A. Sagdeo, P. Gupta, A. Upadhyay, A. Kumar, M.N. Singh, R.K. Gupta, S.R. Kane, A. Verma, S.K. Deb, Angle dispersive X-ray diffraction beamline on Indus-2 synchrotron radiation source: commissioning and first results, J. Phys. Conf. Ser. 425 (2013) 1-4, https://doi.org/10.1088/1742-6596/425/7/072017. 
  20. A. Bergamaschi, A. Cervellino, R. Dinapoli, F. Gozzo, B. Henrich, I. Johnson, P. Kraft, A. Mozzanica, B. Schmitt, X. Shi, Photon counting microstrip detector for time resolved powder diffraction experiments, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 604 (2009) 136-139, https://doi.org/10.1016/J.NIMA.2009.01.092. 
  21. M. Wojdyr, Fityk: a general-purpose peak fitting program, J. Appl. Crystallogr. 43 (2010) 1126-1128, https://doi.org/10.1107/S0021889810030499. 
  22. T. Ungar, A. Borbely, The effect of dislocation contrast on x-ray line broadening: a new approach to line profile analysis, Appl. Phys. Lett. 69 (1996) 3173-3175, https://doi.org/10.1063/1.117951. 
  23. L. Balogh, G. Ribarik, T. Ungar, Stacking faults and twin boundaries in fcc crystals determined by x-ray diffraction profile analysis, J. Appl. Phys. 100 (2006) 1-7, https://doi.org/10.1063/1.2216195. 
  24. J.B. Cohen, C.N.J. Wagner, Determination of twin fault probabilities from the diffraction patterns of fcc metals and alloys, J. Appl. Phys. 33 (1962) 2073-2077, https://doi.org/10.1063/1.1728897. 
  25. T. Ungar, I. Dragomir, A. Revesz, A. Borbely, The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice, J. Appl. Crystallogr. 32 (1999) 992-1002, https://doi.org/10.1107/S0021889899009334. 
  26. T.H. Simm, Peak broadening anisotropy and the contrast factor in metal alloys, Crystals 8 (2018) 1-31, https://doi.org/10.3390/cryst8050212. 
  27. P.L. Mosbrucker, D.W. Brown, O. Anderoglu, L. Balogh, S.A. Maloy, T.A. Sisneros, J. Almer, E.F. Tulk, W. Morgenroth, A.C. Dippel, Neutron and X-ray diffraction analysis of the effect of irradiation dose and temperature on microstructure of irradiated HT-9 steel, J. Nucl. Mater. 443 (2013) 522-530, https://doi.org/10.1016/j.jnucmat.2013.07.065. 
  28. E.H. Lee, L.K. Mansur, Relationships between phase stability and void swelling in Fe-Cr-Ni alloys during irradiation, Metall. Trans. A, Phys. Metall. Mater. Sci. 23 A (1992) 1977-1986, https://doi.org/10.1007/BF02647545. 
  29. J.T. Stanley, K.R. Garr, Ferrite formation in neutron irradiated type 316 stainless steel, Metall. Trans. A 6 (1975) 531-535, https://doi.org/10.1007/BF02658410. 
  30. J.H. Shim, E. Povoden-Karadeniz, E. Kozeschnik, B.D. Wirth, Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation, J. Nucl. Mater. 462 (2015) 250-257, https://doi.org/10.1016/j.jnucmat.2015.04.013. 
  31. C. Xu, W.Y. Chen, Y. Chen, Y. Yang, Microstructural evolution of NF709 austenitic stainless steel under in-situ ion irradiations at room temperature, 300, 400, 500 and 600 ℃, J. Nucl. Mater. 509 (2018) 644-653, https://doi.org/10.1016/j.jnucmat.2018.07.044. 
  32. L. Tan, W. Zhong, T. Chen, Microstructural stability of tantalum-alloyed ferritic-martensitic steel with neutron irradiation to 7.4 dpa at ~490 ℃, Materialia 9 (2020), 100608, https://doi.org/10.1016/J.MTLA.2020.100608. 
  33. K. Fujii, K. Fukuya, Irradiation-induced microchemical changes in highly irradiated 316 stainless steel, J. Nucl. Mater. 469 (2016) 82-88, https://doi.org/10.1016/j.jnucmat.2015.11.035. 
  34. A. Renault Laborne, P. Gavoille, J. Malaplate, C. Pokor, B. Tanguy, Correlation of radiation-induced changes in microstructure/microchemistry, density and thermoelectric power of type 304L and 316 stainless steels irradiated in the Phenix reactor, J. Nucl. Mater. 460 (2015) 72-81, https://doi.org/10.1016/j.jnucmat.2015.02.014. 
  35. A.F. Padilha, D.M. Escriba, E. Materna-Morris, M. Rieth, M. Klimenkov, Precipitation in AISI 316L(N) during creep tests at 550 and 600 ◦℃ up to 10 years, J. Nucl. Mater. 362 (2007) 132-138, https://doi.org/10.1016/j.jnucmat.2006.12.027. 
  36. C. Hsieh, W. Wu, Overview of intermetallic sigma (σ) phase precipitation in stainless steels, ISRN Metall (2012) 1-16, https://doi.org/10.5402/2012/732471. 
  37. E.M.L.E.M. Jackson, P.E.d. Visser, L.A. Cornish, Distinguishing between Chi and Sigma phases in duplex stainless steels using potentiostatic etching, Mater. Char. 31 (1993) 185-190, https://doi.org/10.1016/1044-5803(93)90061-Y. 
  38. T. Sourmail, Precipitation in creep resistant austenitic stainless steels, Mater. Sci. Technol. 17 (2001) 1-14, https://doi.org/10.1179/026708301101508972. 
  39. X. Zhang, C. Xu, Y. Chen, W.Y. Chen, J.S. Park, P. Kenesei, J. Almer, J. Burns, Y. Wu, M. Li, High-energy synchrotron x-ray study of deformation-induced martensitic transformation in a neutron-irradiated Type 316 stainless steel, Acta Mater. 200 (2020) 315-327, https://doi.org/10.1016/j.actamat.2020.08.057. 
  40. T.R. Allen, J.I. Cole, C.L. Trybus, D.L. Porter, H. Tsai, F. Garner, E.A. Kenik, T. Yoshitake, J. Ohta, The effect of dose rate on the response of austenitic stainless steels to neutron radiation, J. Nucl. Mater. 348 (2006) 148-164, https://doi.org/10.1016/j.jnucmat.2005.09.011. 
  41. T. Okita, T. Sato, N. Sekimura, T. Iwai, F.A. Garner, The synergistic influence of temperature and displacement rate on microstructural evolution of ion-irradiated Fe-15Cr-16Ni model austenitic alloy, J. Nucl. Mater. 367-370 B (2007) 930-934, https://doi.org/10.1016/j.jnucmat.2007.03.061. 
  42. T. Okita, T. Sato, N. Sekimura, F.A. Garner, L.R. Greenwood, The primary origin of dose rate effects on microstructural evolution of austenitic alloys during neutron irradiation, J. Nucl. Mater. 307-311 (2002) 322-326, https://doi.org/10.1016/S0022-3115(02)01202-3.