Browse > Article
http://dx.doi.org/10.15435/JILASSKR.2021.26.1.1

Numerical Analysis of the Sessile Droplet Evaporation on Heated Surfaces  

Jeong, Chan Ho (중앙대학교 기계공학과)
Lee, Hyung Ju (중앙대학교 기계공학과)
Yun, Kuk Hyun (중앙대학교 기계공학과)
Lee, Seong Hyuk (중앙대학교 기계공학부)
Publication Information
Journal of ILASS-Korea / v.26, no.1, 2021 , pp. 1-8 More about this Journal
Abstract
Droplet evaporation has been known as a common phenomenon in daily life, and it has been widely used for many applications. In particular, the influence of the different heated substrates on evaporation flux and flow characteristics is essential in understanding heat and mass transfer of evaporating droplets. This study aims to simulate the droplet evaporation process by considering variation of thermal property depending on the substrates and the surface temperature. The commercial program of ANSYS Fluent (V.17.2) is used for simulating the conjugated heat transfer in the solid-liquid-vapor domains. Moreover, we adopt the diffusion-limited model to predict the evaporation flux on the different heated substrates. It is found that the evaporation rate significantly changes with the increase in substrate temperature. The evaporation rate substantially varies with different substrates because of variation of thermal property. Also, the droplet evaporates more rapidly as the surface temperature increases owing to an increase in saturation vapor pressure as well as the free convection effect caused by the density gradient.
Keywords
Droplet evaporation; Computational fluid dynamics; Thermal property; Free convection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Y. Zang, S. Tarafdar, Y. Y. Tarasevich, M. D. Choudhury, and T. Dutta, "Evaporation of a droplet: from physics to applications", Phys Rep, Vol. 804, 2019, pp. 1-56.   DOI
2 D. Brutin and V. Starov, "Recent advances in droplet wetting and evaporation", Chem Soc Rev, Vol. 47, 2018, pp. 558-585.   DOI
3 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, "Contact line deposits in an evaporating drop", Phys Rev E, Vol. 62, 2000, pp. 756-765.   DOI
4 W. Bou-Zeid and D. Brutin, "Effect of relative humidity on the spreading dynamics of sessile drops of blood", Colloid Surface A, Vol. 456, 2014, pp. 273-285.   DOI
5 J. H. Moon, S. M. Lee, C. K. Choi, and S. H. Lee, "Modeling of the evaporation rate of liquid droplets on anodized heated surfaces", Int Commun Heat Mass, Vol. 98, 2018, pp. 209-215.   DOI
6 B. Sobac and D. Brutin, "Thermal effects of the substrate on water droplet evaporation", Phys Rev E, Vol. 86, 2012.
7 F. Carle, B. Sobac, and D. Brutin, "Experimental evidence of the atmospheric convective transport contribution to sessile droplet evaporation", Appl Phys Lett, Vol. 102, 2013.
8 P. L. Kelly-Zion, C. J. Pursell, N. Hasbamrer, B. Cardozo, K. Gaughan, and K. Nickels, "Vapor distribution above an evaporating sessile drop", Int J Heat Mass Tran, Vol. 65, 2013, pp. 165-172.   DOI
9 P. L. Kelly-Zion, C. J. Pursell, S. Vaidya, and J. Batra, "Evaporation of sessile drops under combined diffusion and natural convection", Colloid Surface A, Vol. 381, 2011, pp. 31-36.   DOI
10 G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, "The strong influence of substrate conductivity on droplet evaporation", J Fluid Mech, Vol. 623, 2009, pp. 329-351.   DOI
11 H. Hu and R. G. Larson, "Evaporation of a sessile droplet on a substrate", J Phys Chem B, Vol. 106, 2002, pp. 1334-1344.   DOI
12 Z. H. Pan, J. A. Weibel, and S. V. Garimella, "Transport mechanisms during water droplet evaporation on heated substrates of different wettability", Int J Heat Mass Tran, Vol. 152, 2020.