• Title/Summary/Keyword: Density of nanoparticle

Search Result 106, Processing Time 0.027 seconds

Effect of TiO2 Coating Thickness on Photovoltaic Performance of Dye-sensitized Solar Cells Prepared by Screen-printing Using TiO2 Powders

  • Lee, Deuk Yong;Cho, Hun;Kang, Daejun;Kang, Jong-Ho;Lee, Myung-Hyun;Kim, Bae-Yeon;Cho, Nam-Ihn
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.4
    • /
    • pp.362-366
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) were synthesized using a $0.25cm^2$ area of a $TiO_2$ nanoparticle layer as the electrode and platinum (Pt) as the counter electrode. The $TiO_2$ nanoparticle layers (12 to 22 ${\mu}m$) were screen-printed on fluorine-doped tin oxide glass. Glancing angle X-ray diffraction results indicated that the $TiO_2$ layer is composed of pure anatase with no traces of rutile $TiO_2$. The Pt counter electrode and the ruthenium dye anchored $TiO_2$ electrode were then assembled. The best photovoltaic performance of DSSC, which consists of a $18{\mu}m$ thick $TiO_2$ nanoparticle layer, was observed at a short circuit current density ($J_{sc}$) of $14.68mA{\cdot}cm^{-2}$, an open circuit voltage ($V_{oc}$) of 0.72V, a fill factor (FF) of 63.0%, and an energy conversion efficiency (${\eta}$) of 6.65%. It can be concluded that the electrode thickness is attributed to the energy conversion efficiency of DSSCs.

Nanoparticle Inducing Device for Effective Drug Delivery System (효과적인 약물전달 시스템을 위한 나노입자 유도 장치)

  • Lee, Chongmyeong;Han, Hyeonho;Jang, Byonghan;Oh, Eunseol;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.102-110
    • /
    • 2017
  • Cancer is one of the most challenging human diseases. Current clinical methods have limitations for early-stage cancer diagnosis and effective therapy. Moreover, current surgical methods to remove tumors are not precise enough and chemotherapy destroys normal tissues as well as malignant tumors, resulting in severe side effects such as hair loss, vomiting, diarrhea, and blood disorders. Recently, nanotechnology using nano-sized particles suggests advanced solutions to overcome the limitations. Various nanoparticles have been reported for more accurate diagnosis and minimized side effects. However, current nanoparticles still show limited targeting accuracy for cancer generally below 5% injection dosage. Therefore, herein we report a new nanoparticle inducing device(NID) to guide the nanoparticles externally by using both variable magnetic fields and blood flows. NID can be a promising approach to improve targeting accuracy for drug delivery using iron oxide nanoparticles.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

Effect of Heat-Treatment on the Optical Properties of Self-Assembled SiO2 Photonic Crystals (자기조립을 통해 형성된 실리카 광자결정의 광특성에 미치는 열처리 효과)

  • O, Yong-Taeg;Kim, Myung-Soon;Shin, Dong-Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.127-131
    • /
    • 2005
  • We examined the effect of low temperature heat-treatment on the optical properties of the photonic crystals self-assembled using a monodispersed spherical $SiO_2$ nanoparticle. When the heat treatment temperature increased, the reflectance peak, which is induced by the photonic band gap, moved to a shorter wavelength direction, and the peak intensity of Fabry-Perot fringes also increased. The highest reflectance peak intensity was obtained in the sample heat-treated at $250\~300^{\circ}C$. The heat-treatment reduced the average particle size and the quantity of defects, and increased the packing density of the photonic crystal.

Study on the Recovery Silver and Nanoparticles Synthesis from LTCC By-products of Lowly Concentrated Silver (저농도 은이 함유된 LTCC 전극공정부산물로부터 은 회수 및 나노입자 제조 연구)

  • Joo, Soyeong;Ahn, Nak-Kyoon;Lee, Chan Gi;Yoon, Jin-Ho
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.232-239
    • /
    • 2018
  • In this paper, the recovery and nanoparticle synthesis of Ag from low temperature co-fired ceramic (LTCC) by-products are studied. The effect of reaction behavior on Ag leaching conditions from the LTCC by-products is confirmed. The optimum leaching conditions are determined to be: 5 M $HNO_3$, a reaction temperature of $75^{\circ}C$, and a pulp density of 50 g/L at 60 min. For the selective recovery of Ag, the [Cl]/[Ag] equivalence ratio experiment is performed using added HCl; most of the Ag (more than 99%) is recovered. The XRD and MP-AES results confirm that the powder is AgCl and that impurities are at less than 1%. Ag nanoparticles are synthesized using a chemical reduction process for recycling, $NaBH_4$ and PVP are used as reducing agents and dispersion stabilizers. UV-vis and FE-SEM results show that AgCl powder is precipitated and that Ag nanoparticles are synthesized. Ag nanoparticles of 100% Ag are obtained under the chemical reaction conditions.

Enhanced Electromagnetic Properties of Nickel Nanoparticles Dispersed Carbon Fiber via Electron Beam Irradiation (전자선 안정화에 의한 니켈 나노 입자가 분산된 탄소섬유의 전자기적 특성 향상)

  • Lee, Yeong Ju;Kim, Hyun Bin;Lee, Seung Jun;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat-treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

Impacts of halloysite clay nanoparticles on the structural and γ-ray shielding properties of the epoxy resin

  • K.G. Mahmoud;M.I. Sayyed;S. Hashim;Aljawhara H. Almuqrin;Abu El-Soad A.M
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1585-1590
    • /
    • 2023
  • In this study, halloysite nanoparticles-doped epoxy resin was synthesised using the casting method. The MH-300A density metre revealed that the density of the fabricated composites changed from 1.132 to 1.317 g/cm3 as the halloysite nanoparticle concentration increased. The Fourier transform infrared was recorded for the synthesised composites. Furthermore, the γ-ray shielding properties of the synthesised composites were evaluated using Monte Carlo simulation and a theoretical programme, XCOM. The linear attenuation coefficient of the epoxy resin increased by 43% (at γ-energy of 15 keV) and 14% (at γ-photon energy of 662 keV) when the concentration of the halloysite nanoparticles was increased from 0 wt% to 40 wt%, respectively.

Carbon-Nanotubes Grown from Spin-Coated Nanoparticles for Field-Emission Displays

  • Kim, Do-Yoon;Yoo, Ji-Beom;Han, In-Taek;Kim, Ha-Jin;Kim, Ha-Jong;Jin, Yong-Wan;Kim, Jong-Min
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.19-24
    • /
    • 2005
  • The density controlled carbon nanotubes (CNTs) are grown on the iron acetate nanoparticles by using the freeze-dry method. The iron-acetate [Fe(II)$(CH_3COO)_2$] solution is used to prepare the catalytic iron nanoparticles. The density of CNTs is controlled in order to enhance the field emission process. Furthermore, the patterning of the iron nanoparticle catalyst-layer for the fabrication of electronic devices is simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to form the electron emitter with under-gate type triode structure.

Comparison of $Y_2O_3$ and ZnO Nanoparticles Introduced in YBCO Multilayered Films as Artificial Pinning Centers (YBCO 다층박막에 첨가된 $Y_2O_3$와 ZnO 나노입자의 자속꽂음 중심 특성 비교)

  • Wie, C.H.;Tran, D.H.;Putri, W.B.K.;Kang, B.;Kim, Y.J.;Oh, S.J.;Lee, N.H.;Kang, W.N.
    • Progress in Superconductivity
    • /
    • v.13 no.2
    • /
    • pp.90-96
    • /
    • 2011
  • We investigated the properties of artificial pinning centers of YBCO multilayer films in which $Y_2O_3$ and ZnO nanoparticles are uniformly introduced by using the pulsed laser deposition (PLD) technique. $Y_2O_3$ and ZnO nanoparticles were deposited on top of YBCO buffer layer and the density of nanoparticles was controlled by varying the number of nanoparticle layers. YBCO superconducting layers with total thickness of 250 nm were deposited on top of $Y_2O_3$ and ZnO nanoparticles. Based on analyses of the surface morphology, the transition temperature $T_c$, and the critical current density $J_c$, we discussed the difference between the two kinds of nanoparticles as flux pinning centers.

Enhanced flux pinning property of GdBa2Cu3O7-x films by ferromagnetic surface decoration

  • Song, C.Y.;Oh, J.Y.;Ko, Y.J.;Lee, J.M.;Kang, W.N.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.21-25
    • /
    • 2020
  • We investigated the flux pinning property of GdBa2Cu3O7-x (GdBCO) films on top of La0.7Sr0.3MnO3 (LSMO) nanoparticles deposited by a surface decoration. Both GdBCO films and LSMO nano particles were deposited by pulsed laser deposition and the number of laser pulses were varied from 80 to 320 in order to control the density of the LSMO nanoparticles. The magnetization data at 77 K showed that the critical current density (Jc) was enhanced in all of the GdBCO films with LSMO nanoparticles and that the Jc enhancement was found to be inversely proportional to the LSMO nanoparticle density. Structural analyses revealed that LSMO nanoparticles induce a compressive strain in the GdBCO films resulting in a disordering in the CuO2 plane. Therefore, the enhanced flux pinning property in the GdBCO with LSMO nanoparticles was attributed to the competing effect between the increase of pinning centers and the increase of compressive strain in the superconducting phase.