Comparison of $Y_2O_3$ and ZnO Nanoparticles Introduced in YBCO Multilayered Films as Artificial Pinning Centers

YBCO 다층박막에 첨가된 $Y_2O_3$와 ZnO 나노입자의 자속꽂음 중심 특성 비교

  • Wie, C.H. (Department of Physics, Chungbuk National University) ;
  • Tran, D.H. (Department of Physics, Chungbuk National University) ;
  • Putri, W.B.K. (Department of Physics, Chungbuk National University) ;
  • Kang, B. (Department of Physics, Chungbuk National University) ;
  • Kim, Y.J. (National Fusion Research Institute) ;
  • Oh, S.J. (National Fusion Research Institute) ;
  • Lee, N.H. (Department of Physics, Sungkyunkwan University) ;
  • Kang, W.N. (Department of Physics, Sungkyunkwan University)
  • Received : 2011.10.31
  • Accepted : 2011.11.23
  • Published : 2011.12.31

Abstract

We investigated the properties of artificial pinning centers of YBCO multilayer films in which $Y_2O_3$ and ZnO nanoparticles are uniformly introduced by using the pulsed laser deposition (PLD) technique. $Y_2O_3$ and ZnO nanoparticles were deposited on top of YBCO buffer layer and the density of nanoparticles was controlled by varying the number of nanoparticle layers. YBCO superconducting layers with total thickness of 250 nm were deposited on top of $Y_2O_3$ and ZnO nanoparticles. Based on analyses of the surface morphology, the transition temperature $T_c$, and the critical current density $J_c$, we discussed the difference between the two kinds of nanoparticles as flux pinning centers.

Keywords

References

  1. C. N. L. Edvardsson et al., Physica C 304, 245-254 (1998).
  2. T. Haugan et al., J. Mater. Res. 18, 2618-2623 (2003).
  3. K. Matsumoto and P. Mele, Supercond. Sci. Technol. 23, 014001 (2010).
  4. T. P. Orlando and K. A. Delin, Foundation of Applied Superconductivity, Addison-Wesley, pp. 219-390 (1990).
  5. S. K. Viswanathan, et al., Thin Solid Films 515, 6452-6455 (2007).
  6. T. Haugan et al., Nature 430, 867-870 (2004).
  7. T. Sueyoshi et al., Physica C 468, 1266-1269 (2008).
  8. M. Hussain and K. Takita, Physica C 470, 291-294 (2010).
  9. P. J. Wu et al. Physica C 282-287, 605-606 (1997).
  10. T. Morishita, Adv. Supercond., 9, 1017-1022 (1997).
  11. P. H. Klein and W. J. Croft, J. Appl. Phys. 38, 1603 (1967).
  12. Z. X. Huang et al., Physica B 406, 818-823 (2011).
  13. H.-S. Yang et al., Thermochimica Acta 455, 50-54 (2007).
  14. T. A. Campbell et al., Physica C 423, 1-8 (2005).
  15. T. Horide et al., Physica C 412-414, 1291-1295 (2004).
  16. M. M. Awang Kechik et al., Supercond. Sci. Technol. 22, 034020 (2009).
  17. J. Albrecht et al., Physica C 404, 18-21 (2004).