DOI QR코드

DOI QR Code

Study on the Recovery Silver and Nanoparticles Synthesis from LTCC By-products of Lowly Concentrated Silver

저농도 은이 함유된 LTCC 전극공정부산물로부터 은 회수 및 나노입자 제조 연구

  • Joo, Soyeong (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Ahn, Nak-Kyoon (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Lee, Chan Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE)) ;
  • Yoon, Jin-Ho (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
  • 주소영 (고등기술연구원 신소재공정센터) ;
  • 안낙균 (고등기술연구원 신소재공정센터) ;
  • 이찬기 (고등기술연구원 신소재공정센터) ;
  • 윤진호 (고등기술연구원 신소재공정센터)
  • Received : 2018.06.01
  • Accepted : 2018.06.18
  • Published : 2018.06.28

Abstract

In this paper, the recovery and nanoparticle synthesis of Ag from low temperature co-fired ceramic (LTCC) by-products are studied. The effect of reaction behavior on Ag leaching conditions from the LTCC by-products is confirmed. The optimum leaching conditions are determined to be: 5 M $HNO_3$, a reaction temperature of $75^{\circ}C$, and a pulp density of 50 g/L at 60 min. For the selective recovery of Ag, the [Cl]/[Ag] equivalence ratio experiment is performed using added HCl; most of the Ag (more than 99%) is recovered. The XRD and MP-AES results confirm that the powder is AgCl and that impurities are at less than 1%. Ag nanoparticles are synthesized using a chemical reduction process for recycling, $NaBH_4$ and PVP are used as reducing agents and dispersion stabilizers. UV-vis and FE-SEM results show that AgCl powder is precipitated and that Ag nanoparticles are synthesized. Ag nanoparticles of 100% Ag are obtained under the chemical reaction conditions.

Keywords

References

  1. E. J. Jang, Y. H. Kim, Y. J. Lee, S. R. Kim and W. T. Kwon: J. of Korean Inst. of Resources Recycling., 19 (2010), 44.
  2. L. H. Le, K. Yoo, J. Jeong, and J. Lee: J. of Korean Inst. of Resources Recycling, 17 (2008) 48.
  3. Buffat, P. and J. Borel.: Phys. Rev. A, 13 (1976) 2287 https://doi.org/10.1103/PhysRevA.13.2287
  4. Nersisyan, H. H., Lee, J. H., Son, H. T., Won, C. W. and Maeng, D. Y.: Mater. Res. Bull., 38 (2003), 949. https://doi.org/10.1016/S0025-5408(03)00078-3
  5. A. Khaleghi, S. Ghader, and D. Afzali: Int. J. Min. Sci. Technol., 24 (2014) 251. https://doi.org/10.1016/j.ijmst.2014.01.018
  6. Y. Choi: Korea. KR 10-2007-0039211 (2007).
  7. K. H. Cho, and S. Park: J. Korean Ind. Eng. chem., 15 (2004) 952.
  8. Sun P. P., Song H. I., Kim T. Y., Min B. J and Cho S. Y.: Ind. Eng. Chem. Res., 53 (2014) 20241. https://doi.org/10.1021/ie5041918
  9. Alam, M. S., Inoue, K., Yoshizuka, K., Dong, Y., and Zhang, P.: Hydrometallurgy., 44 (1997) 245. https://doi.org/10.1016/S0304-386X(96)00053-9
  10. J. M. V. Navazo, G. V. Mendez and L. T. Peiro: Int. J. Life Cycle Assess., 19 (2014) 567. https://doi.org/10.1007/s11367-013-0653-6
  11. Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak,: Angew. Chem. Int. Ed., 48 (2009) 60. https://doi.org/10.1002/anie.200802248
  12. W. Songping and M. Shuyuan,: Mater. Chem. Phys., 89 (2005) 423. https://doi.org/10.1016/j.matchemphys.2004.09.026
  13. A. A. Ashkarran, S. Estakhri, M. R. H. Nezhad, and S. Eshghi,: Physics Procedia., 40 (2013) 76. https://doi.org/10.1016/j.phpro.2012.12.011
  14. V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh, and P. C. Ray: Chem. Phys. Lett., 446 (2007) 77. https://doi.org/10.1016/j.cplett.2007.07.106
  15. Z. Zhang, B. Zhao and L. Hu: J. Solid State Chem., 121 (1996) 105. https://doi.org/10.1006/jssc.1996.0015
  16. K. S. Chou and C. Y. Ren: Mater. Chem. Phys., 64 (2000) 241. https://doi.org/10.1016/S0254-0584(00)00223-6
  17. K. S. Yun, Y. C. Park, B. S. Yang, H. H. Min and C.W. Won: J. Korean Powder Metall. Inst., 12 (2005) 56. https://doi.org/10.4150/KPMI.2005.12.1.056
  18. K. Esumi, T. Tano, K. Torigoe and K. Meguro: Chem.Mater., 2 (1990) 564. https://doi.org/10.1021/cm00011a019
  19. Y. Y. Yu, S. S. Chang, C. L. Lee and C. R. Chris Wang: J. Phys. Chem. B, 101 (1997) 6661. https://doi.org/10.1021/jp971656q
  20. H. H. Huang, X. P. Ni, G. L. Loy, C. H. Chew, K. L.Tan, F. C. Loh, J. F. Deng and G. Q. XU: Langmuir, 12 (1996) 909. https://doi.org/10.1021/la950435d
  21. K. S. Yun, Y. C. Park, B. S. Yang, h. H. Min and C. W. Won.: J. Korean Powder Metall. Inst., 12 (2005) 56. https://doi.org/10.4150/KPMI.2005.12.1.056
  22. B. Wiley, Y. Sun, and Y. Xia.: Acc. Chem. Res., 40 (2007) 1067. https://doi.org/10.1021/ar7000974
  23. Agnihotri, S., Mukherji, S., & Mukherji, S.: RSC Adv., 4 (2014) 3974. https://doi.org/10.1039/C3RA44507K
  24. X. Dong, X. Ji, H. Wu, L. Zhao, J. Li and W. Yang, J. Phys. Chem. C, 113 (2009) 6573. https://doi.org/10.1021/jp900775b
  25. Zhang, Z., & Wu, Y.: Langmuir, 26 (2010) 9214. https://doi.org/10.1021/la904410f
  26. Simonelli, A. P., Mehta, S. C., Higuchi, W. I.: J. Pharm. Sci., 58 (1969) 538. https://doi.org/10.1002/jps.2600580503
  27. Dey, G. R., Kishore, K.: Radiat. Phys. Chem., 72 (2005) 565. https://doi.org/10.1016/j.radphyschem.2004.04.027
  28. Liu, M., Yan, X., Liu, H., Yu, W.: React. Funct. Polym., 44 (2000) 55. https://doi.org/10.1016/S1381-5148(99)00077-2
  29. H. S. Wang, X. L. Qiao, J. Chena, X. J. Wang, S. Ding.: J. Mater. Chem. Phys., 94 (2005) 449. https://doi.org/10.1016/j.matchemphys.2005.05.005
  30. Bradley, J. S.: Clusters and colloids: From theory to applications (1994) 459.
  31. D. B. Zhang, H. M. Cheng, and J. M. Ma.: J. Mater. Sci. Lett., 20 (2001) 439. https://doi.org/10.1023/A:1010906615079
  32. T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc, M.C. Dang.: Adv. Nat. Sci. Nanosci. Nanotechnol., 3 (2012) 035004. https://doi.org/10.1088/2043-6262/3/3/035004