• Title/Summary/Keyword: Density estimation

Search Result 1,214, Processing Time 0.03 seconds

A Note on Central Limit Theorem for Deconvolution Wavelet Density Estimators

  • Lee, Sungho
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.241-248
    • /
    • 2002
  • The problem of wavelet density estimation based on Shannon's wavelets is studied when the sample observations are contaminated with random noise. In this paper we will discuss the asymptotic normality for deconvolving wavelet density estimator of the unknown density f(x) when courier transform of random noise has polynomial descent.

The Effects of Estimation Activities on Understanding Concepts, Predicting and Calculating Answers in Problem Solving Procedure: Cases of Speed and Density (어림 활동이 문제 해결 과정에서 개념 이해, 해답 예측, 계산에 미치는 영향 : 속력과 밀도의 사례를 중심으로)

  • Suh, Jung-Ah;Jo, Kwang-Hee;Song, Jin-Woong;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.5
    • /
    • pp.814-824
    • /
    • 2004
  • This article presents the effects of estimation activities related to speed and density on students' concept-understanding, answer-prediction, and answer-calculation in problem solving procedure with quantitative and qualitative methods. Participants were one hundred and ninety two seventh graders from one coeducational school in Seoul. Half of them participated in the estimation activities and the other half did in the measurement activities. Discussions of three students during estimation activities on density and their post-interviews were tape-recorded. Pre- and post-assessment scores were analyzed for the whole classes, and students' discussions and interviews served this research as evidences for the case analysis. Results of scores indicated that students in the estimation activities were significantly better than those in the measurement activities for predicting answers, but not for understanding concepts. Analysis of the cases revealed that estimation activity helped them to understand the relations of mass, volume and density, empirically, which enhanced their prediction ability. Furthermore, the ability could help a student with low calculation ability to comprehend the calculation problems. Thus, it is concluded that estimation activities could influence students' empirical learning on quantitative concepts, which enhanced their prediction ability.

A New Remeshing Technique of Tetrahedral Elements by Redistribution of Nodes in Subdomains and its Application to the Finite Element Analysis (영역별 절점 재분포를 통한 사면체 격자 재구성 방법 및 유한요소해석에의 적용)

  • Hong J.T.;Lee S.R.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.607-610
    • /
    • 2005
  • A remeshing algorithm using tetrahedral elements has been developed, which is adapted to the mesh density map constructed by a posteriori error estimation. In the finite element analyses of metal forging processes, numerical error increases as deformation proceeds due to severe distortion of elements. In order to reduce the numerical error, the desired mesh sizes in each region of the workpiece are calculated by a posteriori error estimation and the density map is constructed. Piecewise density functions are then constructed with the radial basis function in order to interpolate the discrete data of the density map. The sample mesh is constructed based on the point insertion technique which is adapted to the density function and the mesh size is controlled by moving and deleting nodes to obtain optimal distribution according to the mesh density function and the quality optimization function as well. After finishing the redistribution process of nodes, a tetrahedral mesh is constructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

  • PDF

Modified Local Density Estimation for the Log-Linear Density

  • Pak, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • We consider local likelihood method with a smoothed version of the model density in stead of an original model density. For simplicity a model is assumed as the log-linear density then we were able to show that the proposed local density estimator is less affected by changes among observations but its bias increases little bit more than that of the currently used local density estimator. Hence if we use the existing method and the proposed method in a proper way we would derive the local density estimator fitting the data in a better way.

  • PDF

ROC Function Estimation (ROC 함수 추정)

  • Hong, Chong-Sun;Lin, Mei Hua;Hong, Sun-Woo
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.987-994
    • /
    • 2011
  • From the point view of credit evaluation whose population is divided into the default and non-default state, two methods are considered to estimate conditional distribution functions: one is to estimate under the assumption that the data is followed the mixture normal distribution and the other is to use the kernel density estimation. The parameters of normal mixture are estimated using the EM algorithm. For the kernel density estimation, five kinds of well known kernel functions and four kinds of the bandwidths are explored. In addition, the corresponding ROC functions are obtained based on the estimated distribution functions. The goodness-of-fit of the estimated distribution functions are discussed and the performance of the ROC functions are compared. In this work, it is found that the kernel distribution functions shows better fit, and the ROC function obtained under the assumption of normal mixture shows better performance.

DETERMINATION OF OPTIMAL ROBUST ESTIMATION IN SELF CALIBRATING BUNDLE ADJUSTMENT (자체검정 번들조정법에 있어서 최적 ROBUST추정법의 결정)

  • 유환희
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 1991
  • The objective of this paper is to investigate the optimal Robust estimation and scale estimator that could be used to treat the gross errors in a self calibrating bundle adjustment. In order to test the variability in performance of the different weighting schemes in accurately detecting gross error, five robust estimation methods and three types of scale estimators were used. And also, two difference control point patterns(high density control, sparse density control) and three types of gross errors(4$\sigma o$, 20$\sigma o$, 50$\sigma o$) were used for comparison analysis. As a result, Anscombe's robust estimation produced the best results in accuracy among the robust estimation methods considered. when considering the scale estimator about control point patterns, It can be seen that Type II scale estimator provided the best accuracy in high density control pattern. On the other hand, In the case of sparse density control pattern, Type III scale estimator showed the best results in accuracy. Therefore it is expected to apply to robustified bundle adjustment using the optimal scale estimator which can be used for eliminating the gross error in precise structure analysis.

  • PDF

An Approximation of the Cumulant Generating Functions of Diffusion Models and the Pseudo-likelihood Estimation Method (확산모형에 대한 누율생성함수의 근사와 가우도 추정법)

  • Lee, Yoon-Dong;Lee, Eun-Kyung
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.38 no.1
    • /
    • pp.201-216
    • /
    • 2013
  • Diffusion is a basic mathematical tool for modern financial engineering. The theory of the estimation methods for diffusion models is an important topic of the financial engineering. Many researches have been tried to apply the likelihood estimation method for estimating diffusion models. However, the likelihood estimation method for diffusion is complicated and needs much amount of computing. In this paper we develop the estimation methods which are simple enough to be compared to the Euler approximation method, and efficient enough statistically to be compared to the likelihood estimation method. We devise pseudo-likelihood and propose the maximum pseudo-likelihood estimation methods. The pseudo-likelihoods are obtained by approximating the transition density with normal distributions. The means and the variances of the distributions are obtained from the delta expansion suggested by Lee, Song and Lee (2012). We compare the newly suggested estimators with other existing estimators by simulation study. From the simulation study we find the maximum pseudo-likelihood estimator has very similar properties with the maximum likelihood estimator. Also the maximum pseudo-likelihood estimator is easy to apply to general diffusion models, and can be obtained by simple numerical steps.

Prediction of Land Use/Land Cover Change in Forest Area Using a Probability Density Function

  • Park, Jinwoo;Park, Jeongmook;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.305-314
    • /
    • 2017
  • This study aimed to predict changes in forest area using a probability density function, in order to promote effective forest management in the area north of the civilian control line (known as the Minbuk area) in Korea. Time series analysis (2010 and 2016) of forest area using land cover maps and accessibility expressed by distance covariates (distance from buildings, roads, and civilian control line) was applied to a probability density function. In order to estimate the probability density function, mean and variance were calculated using three methods: area weight (AW), area rate weight (ARW), and sample area change rate weight (SRW). Forest area increases in regions with lower accessibility (i.e., greater distance) from buildings and roads, but no relationship with accessibility from the civilian control line was found. Estimation of forest area change using different distance covariates shows that SRW using distance from buildings provides the most accurate estimation, with around 0.98-fold difference from actual forest area change, and performs well in a Chi-Square test. Furthermore, estimation of forest area until 2028 using SRW and distance from buildings most closely replicates patterns of actual forest area changes, suggesting that estimation of future change could be possible using this method. The method allows investigation of the current status of land cover in the Minbuk area, as well as predictions of future changes in forest area that could be utilized in forest management planning and policymaking in the northern area.

Density map estimation based on deep-learning for pest control drone optimization (드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정)

  • Baek-gyeom Seong;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Hyun Ho Woo;Hunsuk Lee;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.53-64
    • /
    • 2024
  • Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, the current method of uniform spraying leads to environmental damage due to overuse of pesticides and drift by wind. To address this issue, it is necessary to enhance spraying performance through precise performance evaluation. Therefore, as a foundational study aimed at optimizing drone-based pest control technologies, this research evaluated water-sensitive paper (WSP) via density map estimation using convolutional neural networks (CNN) with a encoder-decoder structure. To achieve more accurate estimation, this study implemented multi-task learning, incorporating an additional classifier for image segmentation alongside the density map estimation classifier. The proposed model in this study resulted in a R-squared (R2) of 0.976 for coverage area in the evaluation data set, demonstrating satisfactory performance in evaluating WSP at various density levels. Further research is needed to improve the accuracy of spray result estimations and develop a real-time assessment technology in the field.

A Support Vector Method for the Deconvolution Problem

  • Lee, Sung-Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.3
    • /
    • pp.451-457
    • /
    • 2010
  • This paper considers the problem of nonparametric deconvolution density estimation when sample observa-tions are contaminated by double exponentially distributed errors. Three different deconvolution density estima-tors are introduced: a weighted kernel density estimator, a kernel density estimator based on the support vector regression method in a RKHS, and a classical kernel density estimator. The performance of these deconvolution density estimators is compared by means of a simulation study.