
Communications of the Korean Statistical Society
2010, Vol. 17, No. 3, 451–457

A Support Vector Method for the Deconvolution Problem

Sungho Lee1,a

aDepartment of Statistics, Daegu University

Abstract
This paper considers the problem of nonparametric deconvolution density estimation when sample observa-

tions are contaminated by double exponentially distributed errors. Three different deconvolution density estima-
tors are introduced: a weighted kernel density estimator, a kernel density estimator based on the support vector
regression method in a RKHS, and a classical kernel density estimator. The performance of these deconvolution
density estimators is compared by means of a simulation study.

Keywords: Kernel density estimator, deconvolution, reproducing kernel Hilbert space(RKHS),
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1. Introduction

The problem of measurements being contaminated with noise exists in many different fields (e.g.
Stefanski and Carroll, 1990; Louis, 1991; Zhang, 1992). This deconvolution problem of interest
can be stated as follows. Let X and Z be independent random variables with density functions f (x)
and q(z), respectively, where f (x) is unknown and q(z) is known. One observes a sample of random
variables Yi = Xi + Zi, i = 1, 2, . . . , n. The objective is to estimate the density function f (x) where g(y)
is the convolution of f (x) and q(z), g(y) = ( f ∗ q)(y) =

∫ ∞
−∞

f (y− z)q(z)dz. The most popular approach
to this deconvolution problem has been to estimate f (x) by a kernel estimator and Fourier transform
(e.g. Carroll and Hall, 1988; Liu and Taylor, 1989; Fan, 1991). While kernel density estimation is
widely considered as the most popular approach to density deconvolution, other alternatives have been
proposed (e.g. Mendelsohn and Rice, 1982; Pensky and Vidakovic, 1999; Hall and Qiu, 2005; Lee and
Taylor, 2008). Following the work of Fan (1991), two types of error distributions can be considered:
ordinary smooth and super smooth distributions. Gamma or double exponential distribution functions
are ordinary smooth, that is, the Fourier transform q̃(ξ) (=

∫ ∞
−∞

e−iξzq(z)dz) of q(z) has a polynomial
descent. Normal or Cauchy distribution functions are super smooth, that is, the Fourier transform q̃(ξ)
of q(z) has an exponential descent.

In this paper three different deconvolution density estimators are introduced when the error distri-
bution is double exponential: a weighted kernel density estimator proposed by Hazelton and Turlach
(2009), a kernel density estimator based on the support vector regression method in a reproducing ker-
nel Hilbert space(RKHS), and a classical(Parzen’s) kernel density estimator. Finally, it will be shown
through a simulation study that the kernel density estimator based on the support vector regression
method in a RKHS is not as strong as the classical kernel density estimator.
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2. Deconvolution when Measurement Errors are Double Exponential

This section will introduce three different deconvolution density estimators. First, we will evaluate a
weighted kernel density estimator when the sample observations are contaminated by double expo-
nentially distributed errors. When Hazelton and Turlach proposed this estimator, they showed that
it is non-negative and that if the optimal weighting scheme ωi (= f (Yi)/g(Yi)) was known, then the
estimator would have MISE(mean integrated squared error) of asymptotic order n−4/5. They applied
the estimator in cases with the Gaussian kernel and normal measurement error, and showed that the
estimator can be evaluated without recourse to numerical integration techniques. Now, we can eval-
uate the weighted kernel estimator based on the Gaussian kernel in case of a double exponentially
distributed error.

Let

f̂ω(x) =
1
n

n∑
i=1

ωiKh(x − Yi), ωi ≥ 0,
n∑

i=1

ωi = n

and

Q(ω) =

∫ ∞

−∞

(
f̂ω ∗ q(y) − ĝ(y)

)2
dy, q(z) =

1
2σz

e−|z|/σz , ĝ(y) =
1
n

n∑
i=1

Kh(y − Yi).

Then

Q(ω) =

∫ ∞

−∞

(
f̂ω ∗ q(y) − ĝ(y)

)2
dy

=

∫ ∞

−∞

∫ ∞

−∞

1
n

n∑
i=1

ωi

2
√

2πσhσz
e−(x−Yi)2/2σ2

h−|y−x|/σz dx −
1
n

n∑
i=1

1
√

2πσh
e−(y−Yi)2/2σ2

h

2

dy

=

∫ ∞

−∞

eσ
2
h/2σ

2
z

2σzn

n∑
i=1

ωi

e−(y−Yi)/σzΦ

y − Yi − σ
2
h/σz

σh

 + e(y−Yi)/σz

1 − Φ

y − Yi + σ2
h/σz

σh


−

1
n

n∑
i=1

1
√

2πσh
e−(y−Yi)2/2σ2

h

2

dy

=

n∑
i=1

ω2
i

eσ
2
h/σ

2
z

4σ2
z n2

∫ ∞

−∞

e−2(y−Yi)/σzΦ2
y − Yi − σ

2
h/σz

σh

 + e2(y−Yi)/σz

1 − Φ

y − Yi + σ2
h/σz

σh


2

+ 2Φ

y − Yi − σ
2
h/σz

σh

 1 − Φ

y − Yi + σ2
h/σz

σh


]
dy

+
∑
i< j

∑
ωiω j

eσ
2
h/σ

2
z

2σ2
z n2

∫ ∞

−∞
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σh
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2
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eσ
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2
z

σzn2
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×

 n∑
i=1

1
√

2πσh
e−(y−Yi)2/2σ2

h

 dy +

∫ ∞

−∞

1
n

n∑
i=1

1
√

2πσh
e−(y−Yi)2/2σ2

h

2

dy, (2.1)

where Kh(x) = 1/(
√

2πσh)e−x2/2σ2
h and Φ(x) =

∫ x
−∞

1/
√

2πe−t2/2dt.
Thus optimizing Q(ω) in (2.1) under the constraints that the weights are non-negative and sum to

n leads to a quadratic programming problem:

minimizeω
1
2
ω′Hω + f ′ω

subject to
n∑

i=1

ωi = n, ωi ≥ 0, i = 1, 2, . . . , n.

Let ω̂ = arg minω Q(ω). Then, we obtain f̂ω̂(x) = 1/n
∑n

i=1 ω̂iKh(x − Yi).
As Equation (2.1) indicates, the coefficients are not available in closed form and hence a numerical

method is needed. We speculate that they will be computed relatively quickly through numerical
integration method even though we could not obtain a solution to this problem here. Hazelton and
Turlach (2009) recommended a penalized form of this criterion in order to regularize the optimization
problem.

Next, we will introduce a method of deconvolution density estimation using the support vector
regression method in a reproducing kernel Hilbert space(RKHS) with the Gaussian kernel. The fol-
lowing support vector method based on Phillips’ residual method (Phillips, 1962) was proposed by
Lee (2008) and Mukherjee and Vapnik (1999). In Lee (2008) the following estimator (2.2) was ex-
cluded in the simulation owing to the singular problem in K−1 and computing difficulties. In this paper
the estimator (2.2) will be executed and compared in the simulation.

minimize Ω(g) = (g, g)H =

n∑
i, j=1

ωiω jk(yi, y j), g(y, ω) =

n∑
i=1

ωik(yi, y)

subject to max
i

∣∣∣∣∣∣∣∣Gn(y) −
∫ y

−∞

n∑
j=1

ω jk
(
y j, y′

)
dy′

∣∣∣∣∣∣∣∣
y=yi

= ε, ωi ≥ 0,
n∑

i=1

ωi = 1.

Then, the coefficients ωi’s can be found by solving the following quadratic programming problem
and applying the equation ω = K−1R(α − α∗):

minimize
1
2

(α − α∗)tRtK−1R(α − α∗) −
n∑

i=1

yi(αi − α
∗
i ) + ε

n∑
i=1

(αi + α∗i )

subject to 0 ≤ α∗i , αi ≤ C, i = 1, . . . , n,

where K = [ki j]n×n, R = [ri j]n×n, ri j =
∫ yi

−∞
k(y j, y)dy.

Then, applying the Fourier inversion formula,

f̂ (x) =
1

2π

∫ ∞

−∞

˜̂g(ξ)
q̃(ξ)

eiξx dξ =
1

2π

∫ ∞

−∞

n∑
j=1

ω jk̃(y j, ξ)
eiξx

q̃(ξ)
dξ.
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Thus in the case of double exponential measurement error q(z) = 1/(2σz)e−|z|/σz ,

f̂ (x) =
1

2π

∫ ∞

−∞

n∑
j=1

ω j k̃(y j, ξ)
eiξx

q̃(ξ)
dξ

=
1

2π

n∑
j=1

ω j

∫ ∞

−∞

e−iξy j−0.5σ2
hξ

2 (
1 + σ2

zξ
2
)

eiξxdξ

=

n∑
j=1

ω j
√

2πσh
e−(x−y j)2/2σ2

h + σ2
z

n∑
j=1

ω j
√

2πσ3
h

e−(x−y j)2/2σ2
h

− σ2
z

n∑
j=1

ω j
√

2πσ5
h

(x − y j)2e−(x−y j)2/2σ2
h , (2.2)

where k(x, y) = (
√

2πσh)−1e−(x−y)2/2σ2
h and q̃(ξ) = (1 + σzξ

2)−1.
Finally, the most popular approach to the deconvolution problem is to estimate f (x) by a kernel

estimator and Fourier transform. The deconvolution density estimator (e.g. Liu and Taylor, 1989; Fan,
1991) is given by

f̂ (x) =
1

2πn

n∑
j=1

∫ ∞

−∞

eiξ(x−y j) K̃(σhξ)
q̃(ξ)

dξ.

Then using the normalized Gaussian kernel, K̃(σhξ) = e−0.5σ2
hξ

2
, and double exponential measurement

error q(z) = 1/(2σz)e−|z|/σz , the classical kernel density estimator f̂ (x) (Pensky and Vidakovic, 1999)
is evaluated as

f̂ (x) =
1

2πn

n∑
j=1

∫ ∞

−∞

eiξ(x−y j) K̃(σhξ)
q̃(ξ)

dξ

=
1

√
2πσhn

n∑
j=1

e
−0.5

(
x−y j
σh

)2
1 − σ2

Z

σ2
h


(

x − y j

σh

)2

− 1


 .

3. Simulation and Discussion

In this section we compare the performance of deconvolution density estimators when measurement
errors are double exponential. The empirical distribution function, Gn(y) = 1/n

∑n
i=1 I(Yi ≤ y), is used

as an estimator of G(y). Target distributions are selected from distribution functions used in Hazelton
and Turlach (2009). The weighted kernel density estimator is excluded here due to computing diffi-
culties in Equation (2.1) and it will be the ongoing research project of the author. In this section the
support vector kernel density estimator and the classsical kernel density estimator are compared by a
simulation.

The following figures show plots of classical kernel density estimates and support vector kernel
density estimates using Phillips’ method when 100 points are randomly generated respectively from a
target distribution f (x) and a noise distribution, double exponential distribution q(z) with mean zero.
Each figure presents the case that the support vector kernel density estimator is best fitted to the exact
probability density function f (x) among 30 randomly generated data sets and the classical kernel
density estimator is fitted to the data with the best possible parameter(= σh). The measurement error
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(a) var(Z)/var(X) = 0.1 (b) var(Z)/var(X) = 0.25 (c) var(Z)/var(X) = 0.5
Figure 1: The simulation study when target density f (x) is N(0, 1)

(a) var(Z)/var(X) = 0.1 (b) var(Z)/var(X) = 0.25 (c) var(Z)/var(X) = 0.5
Figure 2: The simulation study when target density f (x) is 0.5N(−2.5, 1) + 0.5N(2.5, 1)

variance is set at low (= var(Z)/var(X) = 0.1), moderate (= var(Z)/var(X) = 0.25), and high levels
(= var(Z)/var(X) = 0.5) as shown in Hazelton and Turlach (2009). The exact probability density
function f (x) is shown in bold lines and the support vector kernel density estimate is shown in dashed
lines. For the support vector kernel density estimates, Gunn’s program (Gunn, 1998) and MATLAB
6.5 were used.

Figure 1 presents a simulation study when the target distribution is the standard normal proba-
bility distribution f (x). The parameters (= σh) of classical kernel density estimates corresponding
to variance ratios of 0.1, 0.25 and 0.5 are 0.6, 0.6 and 0.75 respectively. The parameters (= σh) of
support vector kernel density estimates corresponding to variance ratios of 0.1, 0.25 and 0.5 are 0.95,
0.95 and 0.95 respectively and ε = 0.05, C = ∞ are used.

Figure 2 presents a simulation study when the target distribution is the symmetric bimodal density
0.5N(−2.5, 1) + 0.5N(2.5, 1). The parameters (= σh) of classical kernel density estimates correspond-
ing to variance ratios of 0.1, 0.25 and 0.5 are 0.75, 1.1 and 1.1 respectively. The parameters (= σh) of
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(a) var(Z)/var(X) = 0.1 (b) var(Z)/var(X) = 0.25 (c) var(Z)/var(X) = 0.5
Figure 3: The simulation study when target density f (x) is 2/3N(0, 1) + 1/3N(0, 0.04)

support vector kernel density estimates corresponding to variance ratios of 0.1, 0.25 and 0.5 are 1.05,
1.1 and 1.1 respectively and ε = 0.05, C = ∞ are used.

Figure 3 presents a simulation study when the target distribution is the kurtotic density 2/3N(0, 1)+
1/3N(0, 0.04). The parameters (= σh) of classical kernel density estimates corresponding to variance
ratios of 0.1, 0.25 and 0.5 are 0.3, 0.5 and 0.5 respectively. The parameters (= σh) of support vector
kernel density estimates corresponding to variance ratios of 0.1, 0.25 and 0.5 are 0.95, 0.9 and 0.9
respectively and ε = 0.05, C = ∞ are used.

As the illustrated figures suggest, most of Figures in 30 data sets did not show that the support
vector kernel density estimator using Phillips’ method is as good as the classical kernel density esti-
mator. However, the estimator is attractive in the sense that some coefficients in ω = K−1R(α − α∗)
are very close to zero.

4. Concluding Remarks

In this paper three different deconvolution density estimators were introduced when the sample obser-
vations are contaminated by double exponentially distributed errors. It was shown that the coefficients
of the weighted kernel density estimator based on the Gaussian kernel are not available in closed form.
The weighted kernel density estimator was excluded in the simulation owing to the computing diffi-
culties and it will be the ongoing research project of the author. Even though the simulation in this
paper is limited, it appears to indicate that the classical(Parzen’s) kernel density estimator is better
than the support vector kernel density estimator using Phillilps’ method. However, the support vector
kernel density estimator is attractive in the sense that some coefficients in ω = K−1R(α − α∗) are very
close to zero. But its implementation seems to be more expensive than that of the classical kernel
density estimator when the sample size is large.
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