International Journal of Computer Science & Network Security
/
v.24
no.4
/
pp.179-191
/
2024
With the advancement of modern technology, cyber-attacks are always rising. Specialized defense systems are needed to protect organizations against these threats. Malicious behavior in the network is discovered using security tools like intrusion detection systems (IDS), firewall, antimalware systems, security information and event management (SIEM). It aids in defending businesses from attacks. Delivering advance threat feeds for precise attack detection in intrusion detection systems is the role of cyber-threat intelligence (CTI) in the study is being presented. In this proposed work CTI feeds are utilized in the detection of assaults accurately in intrusion detection system. The ultimate objective is to identify the attacker behind the attack. Several data sets had been analyzed for attack detection. With the proposed study the ability to identify network attacks has improved by using machine learning algorithms. The proposed model provides 98% accuracy, 97% precision, and 96% recall respectively.
The purpose of this study is to study how to apply block-chain technology to prevent data forgery and alteration in the defense sector of AI(Artificial intelligence). AI is a technology for predicting big data by clustering or classifying it by applying various machine learning methodologies, and military powers including the U.S. have reached the completion stage of technology. If data-based AI's data forgery and modulation occurs, the processing process of the data, even if it is perfect, could be the biggest enemy risk factor, and the falsification and modification of the data can be too easy in the form of hacking. Unexpected attacks could occur if data used by weaponized AI is hacked and manipulated by North Korea. Therefore, a technology that prevents data from being falsified and altered is essential for the use of AI. It is expected that data forgery prevention will solve the problem by applying block-chain, a technology that does not damage data, unless more than half of the connected computers agree, even if a single computer is hacked by a distributed storage of encrypted data as a function of seawater.
Recently, with the development of information and communication infrastructure, the number of Internet access devices is rapidly increasing. Smartphones, laptops, computers, and even IoT devices are receiving information and communication services through Internet access. Since most of the device operating environment consists of web (WEB), it is vulnerable to web cyber attacks using web shells. When the web shell is uploaded to the web server, it is confirmed that the attack frequency is high because the control of the web server can be easily performed. As the damage caused by the web shell occurs a lot, each company is responding to attacks with various security devices such as intrusion prevention systems, firewalls, and web firewalls. In this case, it is difficult to detect, and in order to prevent and cope with web shell attacks due to these characteristics, it is difficult to respond only with the existing system and security software. Therefore, it is an automated defense system through the collection and analysis of web shells based on artificial intelligence machine learning that can cope with new cyber attacks such as detecting unknown web shells in advance by using artificial intelligence machine learning and deep learning techniques in existing security software. We would like to propose about. The machine learning-based web shell defense system model proposed in this paper quickly collects, analyzes, and detects malicious web shells, one of the cyberattacks on the web environment. I think it will be very helpful in designing and building a security system.
The Journal of the Convergence on Culture Technology
/
v.9
no.5
/
pp.27-33
/
2023
The war between Ukraine and Russia continues. Ukraine, with the help of the United States and others, is fighting a superior battle against Russia with advanced weapons applied artificial intelligence. In line with this trend, the Korean military announced Defense Innovation 4.0 to expend investment in defense technology for the 4th Industrial Revolution and to realize a smart military. In order to achieve this effectively, it is necessary to examine the weapons R&D system. This thesis examines the existing weapons research and development system and derives the plans that can rapidly develop Advanced weapons in a timely manner. In addition, the plans for Rapid R&D for the application of the recently introduced 4th industrial revolution technology was also presented. Through this, it was intended to help the Korean military quickly adopt Advanced weapons in the future.
As new technologies such as artificial intelligence (AI), cloud, Internet of Things (IoT), big data, and mobile become organically integrated, a new era of digital transformation is emerging. As a result of this digital transformation, cybersecurity issues have surfaced as a negative side effect. Cyberspace, unlike physical space, has no clear limits, which leads to additional side effects and hazards. While promoting digital transformation in defense, conventional customs and behavioral approaches make it difficult to alter the cybersecurity strategy, even if it is vital to comprehend and prepare the attributes associated with time and technology trends. As a result, in this study, we will look at the direction of technology application in the defense as a result of digital transformation and analyze how to correlate from the standpoint of cybersecurity.
Kim, Dongjun;Shin, Yongjin;An, Kyeong-Soo;Kim, Young-Gon;Moon, Il-Chul;Bae, Jang Won
Journal of the Korea Society for Simulation
/
v.30
no.1
/
pp.139-152
/
2021
Simulations enable virtually experiencing rare events as well as analytically analyzing such events. Defense modeling and simulation research and develops the virtual and the constructive simulations to support these utilizations. These virtual and constructive(VC) simulations can interoperate to simultaneously virtual combat experience as well as evaluations on tactics and intelligence of combat entities. Moreover, recently, for artificial intelligence researches, it is necessary to retrieve human behavior data to proceed the imitation learning and the inverse reinforcement learning. The presented work illustrates a case study of VC interoperations in the aircombat scenario, and the work analyze the collected human behavior data from the VC interoperations. Through this case study, we discuss how to build the VC simulation in the aircombat area and how to utilize the collected human behavior data.
The fourth industrial revolution can be called the hyper-connected-based intelligent revolution triggered by advanced information technology and intelligent technology, and the basis for implementing these technologies is 'data'. This study proposes a way to strategically use data in order to lead this intelligent revolution in the defense area. First of all, implications through analysis of domestic and international trends and prior research and current status of defense data management were analyzed, and four directions for development were presented. If the government composes conditions for building, releasing, sharing, distribution, and convergence of defense data considering the environment of national defense in the future, it is expected that it will serve as a foundation and a shortcut to be a digitalized strong military through smart defense innovation in the era of the fourth industrial revolution.
The future outlook for defense faces various and challenging environments such as the acceleration of uncertainty in the global security landscape and limitations in domestic social and economic conditions. In response, the Ministry of National Defense seeks to address the problems and threats through defense innovation based on scientific and technological advancements such as artificial intelligence, drones, and robots. To introduce advanced AI-based technology, it is essential to integrate and utilize data on IT environments such as cloud and 5G. However, existing traditional security policies face difficulties in data sharing and utilization due to mainly system-oriented security policies and uniform security measures. This study proposes a paradigm shift to a data value-based security policy based on theoretical background on data valuation and life-cycle management. Through this, it is expected to facilitate the implementation of scientific and technological innovations for national defense based on data-based task activation and new technology introduction.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.5
/
pp.871-879
/
2020
Perceptual Ad-Blocking is a new advertising blocking technique that detects online advertising by using an artificial intelligence-based advertising image classification model. A recent study has shown that these Perceptual Ad-Blocking models are vulnerable to adversarial attacks using adversarial examples to add noise to images that cause them to be misclassified. In this paper, we prove that existing perceptual Ad-Blocking technique has a weakness for several adversarial example and that Defense-GAN and MagNet who performed well for MNIST dataset and CIFAR-10 dataset are good to advertising dataset. Through this, using Defense-GAN and MagNet techniques, it presents a robust new advertising image classification model for adversarial attacks. According to the results of experiments using various existing adversarial attack techniques, the techniques proposed in this paper were able to secure the accuracy and performance through the robust image classification techniques, and furthermore, they were able to defend a certain level against white-box attacks by attackers who knew the details of defense techniques.
The Ministry of National Defense aims to create an environment in which transparent and reasonable defense policies can be implemented in real time by establishing the vision of smart defense innovation based on the Fourth Industrial Revolution and promoting innovation in technology-based defense operation systems. Artificial intelligence (AI) based defense technology is at the level of basic research worldwide, includes no domestic tasks, and involves classified military operation data and command control/decision information. Further, it is needed to secure independent technologies specialized for our military. In the army, military power continues to decline due to aging and declining population. In addition, it is expected that there will be more than 500,000 units should be managed simultaneously, to recognize the battle situation in real time on the future battlefields. Such a complex battlefield, command decisions will be limited by the experience and expertise of individual commanders. Accordingly, the study of AI core technologies supporting real-time combat command is actively pursued at home and abroad. It is necessary to strengthen future defense capabilities by identifying potential threats that commanders are likely to miss, improving the viability of the combat system, ensuring smart commanders always win conflicts and providing reasonable AI digital staff based on data science. This paper describes the recent research trends in AI military staff technology supporting commander decision-making, broken down into five key areas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.