• Title/Summary/Keyword: Deep etching

Search Result 134, Processing Time 0.028 seconds

Design and Fabrication of a Polarization-Independent 1 ${\times}$ 8 InGaAsP/InP MMI Optical Splitter (편광에 무관한 1 ${\times}$ 8 InGaAsP/InP 다중모드간섭 광분배기의 설계 및 제작)

  • Yu, Jae-Su;Moon, Jeong-Yi;Bae, Seong-Ju;Lee, Yong-Tak
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.28-29
    • /
    • 2000
  • Optical power splitters and/or couplers are important components for optical signal distribution between channels both in wavelength division multiplexing(WDM) systems and photonic integrated circuits(PICs). Since polarization is usually not known after propagation in an optical fiber, passive WDM components have to be polarization insensitivity, Compared to alternatives such as directional couplers or Y-junction splitters, splitters based on multimode interference(MMI) have found a growing interest in recent yens because of their desirable characteristics, such as compact size, low excess loss, wide bandwidth, polarization independence, and relaxed fabrication tolerances$^{(1)}$ . These devices have been fabricated in polymers, silica, or III-V semiconductor materials. A1 $\times$ 4 MMI power splitter on InP materials that were suitable for application in the 1.55-${\mu}{\textrm}{m}$ region$^{(2)}$ . However, the fabrication process of the structure is too complicated and the photolithography tolerance is very tight. Also, a 1 $\times$ 16 InGaAsP/InP MMI power splitter with an excess loss of 2.2dB and a splitting ratio of 1.5dB was demonstrated by using deep etching$^{(3)}$ . The deep etching of the sidewalls through the entire guide layer of the slab waveguide resulted in a number of drawbacks$^{(4)}$ . (omitted)

  • PDF

Deep X-ray Mask with Integrated Micro-Actuator for 3D Microfabrication via LIGA Process (3차원 LIGA 미세구조물 제작을 위한 마이크로 액추에이터 내장형 X-선 마스크)

  • Lee, Kwang-Cheol;Lee, Seung-S.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2187-2193
    • /
    • 2002
  • We present a novel method for 3D microfabrication with LIGA process that utilizes a deep X-ray mask in which a micro-actuator is integrated. The integrated micro-actuator oscillates the X-ray absorber, which is formed on the shuttle mass of the micro-actuator, during X-ray exposures to modify the absorbed dose profile in X-ray resist, typically PMMA. 3D PMMA microstructures according to the modulated dose contour are revealed after GG development. An X-ray mask with integrated comb drive actuator is fabricated using deep reactive ion etching, absorber electroplating, and bulk micromachining with silicon-on-insulator (SOI) wafer. 1mm $\times$ 1 mm, 20 $\mu$m thick silicon shuttle mass as a mask blank is supported by four 1 mm long suspension beams and is driven by the comb electrodes. A 10 $\mu$m thick, 50 $\mu$m line and spaced gold absorber pattern is electroplated on the shuttle mass before the release step. The fundamental frequency and amplitude are around 3.6 kHz and 20 $\mu$m, respectively, for a do bias of 100 V and an ac bias of 20 $V_{p-p}$ (peak-peak). Fabricated PMMA microstructure shows 15.4 $\mu$m deep, S-shaped cross section in the case of 1.6 kJ $cm^{-3}$ surface dose and GG development at 35$^{\circ}C$ for 40 minutes.

Analysis of Novel Helmholtz-inductively Coupled Plasma Source and Its Application for Nano-Scale MOSFETs

  • Park, Kun-Joo;Kim, Kee-Hyun;Lee, Weon-Mook;Chae, Hee-Yeop;Han, In-Shik;Lee, Hi-Deok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.35-39
    • /
    • 2009
  • A novel Helmholtz coil inductively coupled plasma(H-ICP) etcher is proposed and characterized for deep nano-scale CMOS technology. Various hardware tests are performed while varying key parameters such as distance between the top and bottom coils, the distance between the chamber ceiling and the wafer, and the chamber height in order to determine the optimal design of the chamber and optimal process conditions. The uniformity was significantly improved by applying the optimum conditions. The plasma density obtained with the H-ICP source was about $5{\times}10^{11}/cm^3$, and the electron temperature was about 2-3 eV. The etching selectivity for the poly-silicon gate versus the ultra-thin gate oxide was 482:1 at 10 sccm of $HeO_2$. The proposed H-ICP was successfully applied to form multiple 60-nm poly-silicon gate layers.

A Study on 3-D Analytical Model of Ion Implanted Profile (이온 주입된 프로파일의 3-D의 해석적인 모델에 관한 연구)

  • Jung, Won-Chae;Kim, Hyung-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.6-14
    • /
    • 2012
  • For integrated complementary metal oxide semiconductor (CMOS) circuits, the lateral spread for two-dimensional (2-D) impurity distributions are very important for the analyzing the devices. The measured two-dimensional SEM data obtained using the chemical etching-method matched very well with the results of the Gauss model for boron implanted samples. But the profiles in boron implanted silicon were deviated from the Gauss model. The profiles in boron implanted silicon were shown a little bit steep profile in the deep region due to backscattering effect on the near surface from the bombardments of light boron ions. From the simulated 3-D data obtained using an analytical model, the 1-D and 2-D data were compared with the experimental data and could be verified the justification from the experimental data. The data of 3-D model were also shown good agreements with the experimental and the simulated data. It can be used in the 3-D chip design and the analysis of microelectro-mecanical system (MEMS) and special devices.

Improvement of Etch Rate and Profile by SF6, C4F8, O2 Gas Modulation (SF6, C4F8, O2 가스 변화에 따른 실리콘 식각율과 식각 형태 개선)

  • Kwon, Soon-Il;Yang, Kea-Joon;Song, Woo-Chang;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.305-310
    • /
    • 2008
  • Deep trench etching of silicon was investigated as a function of RF source power, DC bias voltage, $C_4F_8$ gas flow rate, and $O_2$ gas addition. On increasing the RF source power from 300 W to 700 W, the etch rate was increased from $3.52{\mu}m/min$ to $7.07{\mu}m/min$. The addition of $O_2$ gas improved the etch rate and the selectivity. The highest etch rate is achieved at the $O_2$ gas addition of 12 %, The selectivity to PR was 65.75 with $O_2$ gas addition of 24 %. At DC bias voltage of -40 V and $C_4F_8$ gas flow rate of 30 seem, We were able to achieve etch rate as high as $5.25{\mu}m/min$ with good etch profile.

Fabrication of a Micro/Nano-scaled Super-water-repellent Surface and Its Impact Behaviors of a Shooting Water Droplet (마이크로/나노 구조를 갖는 초발수성 표면의 제작 및 분사 액적의 충돌 특성 연구)

  • Kim, Hyung-Mo;Lee, Sang-Min;Lee, Chan;Kim, Moo-Hwan;Kim, Joon-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.1020-1025
    • /
    • 2012
  • In this study, we fabricated the superhydrophobic and super-water-repellent surface with the micro/nano scale structures using simple conventional silicon wet-etching technique and the black silicon method by deep reactive ion etching. These fabrication methods are simple but very effective. Also we reported the droplet impact experimental results on the micro/nano-scaled surface. There are two representative impact behaviors as "rebound" and "fragmentation". We found the transition Weber number between "rebound" and "fragmentation" statements, experimentally. Additionally, we concerned about the dimensionless spreading diameters for our super-water-repellent surface. The novel characterization method was introduced for analysis including the "fragmentation" region. As a result, our super-water-repellent surface with the micro/nano-scaled structures shows the different impact behaviors compared with a reference smooth surface, by some meaningful experiments.

Method to control the Sizes of the Nanopatterns Using Block Copolymer (블록 공중합체를 이용한 나노패턴의 크기제어방법)

  • Kang, Gil-Bum;Kim, Seong-Il;Han, Il-Ki
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.366-370
    • /
    • 2007
  • Nano-scopic holes which are distributed densely and uniformly were fabricated on $SiO_2$ surface. Self-assembling resists were used to produce a layer of uniformly distributed parallel poly methyl methacrylate (PMMA) cylinders in a polystyrene (PS) matrix. The PMMA cylinders were degraded and removed by acetic acid rinsing. Subsequently, PS nanotemplates were fabricated. The patterned holes of PS template were approximately $8{\sim}30\;nm$ wide, 40 nm deep, and 60 nm apart. The porous PS template was used as a dry etching mask to transfer the pattern of PS template into the silicon oxide thin film during reactive ion etching (RIE) process. The sizes of the patterned holes on $SiO_2$ layer were $9{\sim}33\;nm$. After pattern transfer by RIE, uniformly distributed holes of which size were in the range of $6{\sim}22\;nm$ were fabricated on Si substrate. Sizes of the patterned holes were controllable by PMMA molecular weight.

Laser micromachining of high-aspect-ratio metallic channels for the application to microthermal devices (마이크로 열소자 제작을 위한 고세장비 금속채널의 레이저 가공)

  • Oh, Kwang-Hwan;Lee, Min-Kyu;Jeong, Sung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.437-446
    • /
    • 2006
  • A fabrication method fur high-aspect-ratio microchannels in stainless steel using laser-assisted thermochemical wet etching is reported in this paper. The fabrication of deep microchannels with an aspect ratio over ten is realized by applying a multiple etching process with an optimization of process conditions. The cross-sectional profile of the microchannels can be adjusted between rectangular and triangular shapes by properly controlling laser power and etchant concentration. Excellent dimensional uniformity is achieved among the channels with little heat-affected area. Microchannels with a width ranging from 15 to $50{\mu}m$ can be fabricated with an aspect ratio of ten and a pitch of 150 m or smaller. The effects of process variables such as laser power, scan speed, and etchant concentration on the fabrication results, including etch width, depth, and cross-sectional profile are closely examined.

Copper Filling to TSV (Through-Si-Via) and Simplification of Bumping Process (비아 홀(TSV)의 Cu 충전 및 범핑 공정 단순화)

  • Hong, Sung-Jun;Hong, Sung-Chul;Kim, Won-Joong;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.79-84
    • /
    • 2010
  • Formation of TSV (Through-Si-Via) with an Au seed layer and Cu filling to the via, simplification of bumping process for three dimensional stacking of Si dice were investigated. In order to produce the via holes, the Si wafer was etched by a DRIE (Deep Reactive Ion Etching) process using $SF_6$ and $C_4F_8$ plasmas alternately. The vias were 40 ${\mu}m$ in diameter, 80 ${\mu}m$ in depth, and were produced by etching for 1.92 ks. On the via side wall, a dielectric layer of $SiO_2$ was formed by thermal oxidation, and an adhesion layer of Ti, and a seed layer of Au were applied by sputtering. Electroplating with pulsed DC was applied to fill the via holes with Cu. The plating condition was at a forward pulse current density of 1000 mA/$dm^2$ for 5 s and a reverse pulse current density of 190 mA/$dm^2$ for 25 s. By using these parameters, sound Cu filling was obtained in the vias with a total plating time of 57.6 ks. Sn bumping was performed on the Cu plugs without lithography process. The bumps were produced on the Si die successfully by the simplified process without serious defect.

Nanoscale Patterning Using Femtosecond Laser and Self-assembled Monolayers (SAMs) (펨토초레이저와 자기조립박막을 이용한 나노스케일 패터닝)

  • Chang, Won-Seok;Choi, Moo-Jin;Kim, Jae-Gu;Cho, Sung-Hak;Whang, Kyung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1270-1275
    • /
    • 2004
  • Standard positive photoresist techniques were adapted to generate nano-scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. SAMs formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists, Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200nm is necessary for oxidation to occur. In this study, ultrafast laser of wavelength 800nm and pulse width 200fs is applied for photolithography. Results show that ultrafast laser of visible range wavelength can replace deep UV laser source for photo patterning using thin organic films. Femtosecond laser coupled near-field scanning optical microscopy facilitates not only the patterning of surface chemical structure, but also the creation of three-dimensional nano-scale structures by combination with suitable etching methods.