• 제목/요약/키워드: Deductive mathematics

검색결과 95건 처리시간 0.021초

초등학교 고학년 아동의 정의적 특성, 수학적 문제 해결력, 추론 능력간의 관계 (A Study on Correlations among Affective Characteristics, Mathematical Problem-Solving, and Reasoning Ability of 6th Graders in Elementary School)

  • 이영주;전평국
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제2권2호
    • /
    • pp.113-131
    • /
    • 1998
  • The purpose of this study is to investigate the relationships among affective characteristics, mathematical problem-solving abilities, and reasoning abilities of the 6th graders for mathematics, and to analyze whether the relationships have any differences according to the regions, which the subjects live. The results are as follows: First, self-awareness is the most important factor which is related mathematical problem-solving abilities and reasoning abilities, and learning habit and deductive reasoning ability have the most strong relationships. Second, for the relationships between problem-solving abilities and reasoning abilities, inductive reasoning ability is more related to problem-solving ability than deductive reasoning ability Third, for the regions, there is a significant difference between mathematical abilities and deductive reasoning abilities of the subjects.

  • PDF

IDEALS OF SHEFFER STROKE HILBERT ALGEBRAS BASED ON FUZZY POINTS

  • Young Bae Jun;Tahsin Oner
    • 호남수학학술지
    • /
    • 제46권1호
    • /
    • pp.82-100
    • /
    • 2024
  • The main objective of the study is to introduce ideals of Sheffer stroke Hilbert algebras by means of fuzzy points, and investigate some properties. The process of making (fuzzy) ideals and fuzzy deductive systems through the fuzzy points of Sheffer stroke Hilbert algebras is illustrated, and the (fuzzy) ideals and the fuzzy deductive systems are characterized. Certain sets are defined by virtue of a fuzzy set, and the conditions under which these sets can be ideals are revealed. The union and intersection of two fuzzy ideals are analyzed, and the relationships between aforementioned structures of Sheffer stroke Hilbert algebras are built.

중학교 수학 영재아의 수학적 정당화에 대한 인식과 특성에 관한 연구 (A Study on the Recognition and Characteristics of Mathematical Justification for Gifted Students in Middle School Mathematics)

  • 홍영석;손홍찬
    • 한국학교수학회논문집
    • /
    • 제24권3호
    • /
    • pp.261-282
    • /
    • 2021
  • 이 연구는 중학교 수학 영재학생의 수학적 정당화에 대한 의미 인식과 수학적 정당화의 특성을 파악하여 정당화 교육을 위한 시사점을 얻고자 한 것이다. 이를 위해 17명의 중학교 수학 영재학생을 대상으로 설문지와 검사지를 투입하여 분석한 결과, 영재학생들은 수학적 정당화에 대하여 입증, 체계화, 발견, 지적 도전과 같은 다양한 의미로 정당화를 인식하였고, 연역적 정당화의 선호도가 높았다. 실제 정당화 활동의 결과, 대수와 기하 문항 모두에서 연역적 정당화가 많았지만 대수 문항에서는 경험적 정당화도 많은 반면 기하 문항에서는 매우 낮음을 알 수 있었다. 연역적 정당화를 완성한 경우, 자신의 정당화에 만족함을 보였지만 수학적 문자와 기호를 사용하여 명제의 일반성을 연역적으로 정당화를 하지 못한 경우에는 불만족을 보였다. 연구 결과는 영재학생들이 경험적 추론의 유용성과 한계를 깨닫고 연역적 정당화를 할 수 있도록 하며 특히 대수적 번역 능력을 향상시킬 수 있는 정당화 교육이 필요함을 시사한다.

중학교 수학에서 기하 내용 취급에 관한 연구 (A Note on Dealing with Some Contents of Geometry in the Middle School Mathematics)

  • 김흥기
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제14권1호
    • /
    • pp.111-127
    • /
    • 2004
  • 본 연구는 기하 부분의 내용이 초등학교에서 중학교로 발전 전개되는 과정에서 일부 용어의 정의와 평행선과 각의 취급에 대하여 알아보았고, 교육과정에 제시된 관련내용을 분석하고 그에 따른 현행 교과서를 살펴보았다. 다음에 관련된 분야의 일부 외국교과서를 비교 분석하여 그 상황을 알아보았다 그 결과 현행 교과서 보다 바람직한 내용의 취급을 위해서는 우선 체계적인 학습을 할 수 있도록 교육과정에 보다 적합한 학습내용과 그 취급 방법을 제시해야만 하고, 그에 따라 교과서도 보다 적합하게 집필되어야 함을 제시하였다. 이를테면 용어의 정의는 반복하여 충분히 이해하도록 하고, 특히 교육의 다양성을 위해서 평행선의 성질에 관한 내용은 공준으로 도입하여 활용할 수도 있고, 우수한 학생들은 증명을 하여 활용할 수도 있도록 다양한 취급을 하는 것이 바람직함을 제시하였다. 그리고 특히 현행 교과서에서는 <7-나 단계에서 취급되고 있는 맞꼭지각의 성질과 평행선의 성질과 같은 연역적 추론에 의해서 증명될 수 있는 내용들은 18- 나 단계>로 이동을 하여 학습하는 것이 학습 체계의 연계에 바람직함을 제시하였다.

  • PDF

Prospective Teachers' Competency in Teaching how to Compare Geometric Figures: The Concept of Congruent Triangles as an Example

  • Leung, K.C. Issic;Ding, Lin;Leung, Allen Yuk Lun;Wong, Ngai Ying
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제18권3호
    • /
    • pp.171-185
    • /
    • 2014
  • Mathematically deductive reasoning skill is one of the major learning objectives stated in senior secondary curriculum (CDC & HKEAA, 2007, page 15). Ironically, student performance during routine assessments on geometric reasoning, such as proving geometric propositions and justifying geometric properties, is far below teacher expectations. One might argue that this is caused by teachers' lack of relevant subject content knowledge. However, recent research findings have revealed that teachers' knowledge of teaching (e.g., Ball et al., 2009) and their deductive reasoning skills also play a crucial role in student learning. Prior to a comprehensive investigation on teacher competency, we use a case study to investigate teachers' knowledge competency on how to teach their students to mathematically argue that, for example, two triangles are congruent. Deductive reasoning skill is essential to geometry. The initial findings indicate that both subject and pedagogical content knowledge are essential for effectively teaching this challenging topic. We conclude our study by suggesting a method that teachers can use to further improve their teaching effectiveness.

Uniform Topology on Hilbert Algebras

  • Saeid, A. Borumand;Babaei, H.;Haveshki, M.
    • Kyungpook Mathematical Journal
    • /
    • 제45권3호
    • /
    • pp.405-411
    • /
    • 2005
  • We use a congruence relation on deductive systems of a Hilbert algebra H, to define a uniform structure on H and investigate the corresponding topology.

  • PDF

수학적 사고 과정 관련의 평가 요소 탐색 (Evaluation Factor related to Thinking Skills and Strategies based on Mathematical Thinking Process)

  • 황혜정
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제40권2호
    • /
    • pp.253-263
    • /
    • 2001
  • Developing mathematical thinking skills is one of the most important goals of school mathematics. In particular, recent performance based on assessment has focused on the teaching and learning environment in school, emphasizing student's self construction of their learning and its process. Because of this reason, people related to mathematics education including math teachers are taught to recognize the fact that the degree of students'acquisition of mathematical thinking skills and strategies(for example, inductive and deductive thinking, critical thinking, creative thinking) should be estimated formally in math class. However, due to the lack of an evaluation tool for estimating the degree of their thinking skills, efforts at evaluating student's degree of mathematics thinking skills and strategy acquisition failed. Therefore, in this paper, mathematical thinking was studied, and using the results of study as the fundamental basis, mathematical thinking process model was developed according to three types of mathematical thinking - fundamental thinking skill, developing thinking skill, and advanced thinking strategies. Finally, based on the model, evaluation factors related to essential thinking skills such as analogy, deductive thinking, generalization, creative thinking requested in the situation of solving mathematical problems were developed.

  • PDF

초등 수학 교재에서 활용되는 추론 분석 (Analyses on the reasoning in primary mathematics textbooks)

  • 서동엽
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제13권2호
    • /
    • pp.159-178
    • /
    • 2003
  • 본 연구는 초등 수학 교재에서 정당화 과점이나 문제 해결 과정에서 활용되는 추론을 분석한 것이다. 본 연구의 분석 결과, 한 가지 전형적인 예에 대한 국소적 연역 추론이 가장 전형적인 특징으로 드러났으며, 사각형에 대한 몇 가지 명제는 연역 추론으로 정당화할 뿐 아니라 일반성을 요구하고 있는 것으로 드러났다. 또한, 열거에 의한 귀납 주론은 그리 많이 활용되고 있지 않으며, 구체물을 통한 유추가 밭이 활용되고 있음을 알 수 있었다. 전형적인 한 가지 예에 대한 설명은 Miyazaki가 제시한 예에 의한 설명이나 Semadeni가 제시한 활동 증명과 유사한 면을 지니고 있지만, 학생들의 학년 단계가 높아지더라도 계속 낮은 수준 머물러 있는 점이 문제점으로 부각되었다. 또한, 사각형의 일반적인 성질을 다루는 몇몇 명제는 Piaget의 이론에 비추어 너무 어려운 것으로 분석되었다. 본 연구에서는 이러한 문제점을 해결할 수 있는 방한으로서 보다 점진적인 추론의 지도를 제안하였는바, 전형적인 예에 대한 경험적 정당화, 전형적인 예에 대한 경험으로부터 추측의 구성, 다양한 예에 대한 추측의 타당성 조사, 일반성에 대한 스키마 형성, 함의 관계의 이해를 위한 기초 경험의 다섯 가지 수준이다.

  • PDF

NIM 게임에서 수학 영재의 필승전략에 대한 추론 사례 (A Case Analysis of Inference of Mathematical Gifted Students in the NIM Game)

  • 박달원
    • 한국학교수학회논문집
    • /
    • 제20권4호
    • /
    • pp.405-422
    • /
    • 2017
  • Nim 게임을 구분하여 한 더미 대상 게임을 1단계, 두 더미 대상 게임을 2단계, 세 더미 대상 게임을 3단계로 나누어 중학교 수학영재들을 대상으로 탐구활동을 실시하였다. 학생들은 난이도가 낮은 1단계에서는 연역적 추론을 통하여 쉽게 필승전략을 발견하였다. 2단계에서는 연역적 추론 또는 귀납적 추론으로 필승전략을 발견하였지만 귀납적 추론 과정에서는 오류가 발견되었다. 3단계 게임에서는 연역적 추론으로 필승전략을 발견한 학생들은 없었으며 귀납적 추론 과정에서는 오류가 발견되었다. 유한개의 경우에서 성립하는 패턴을 정당화 절차 없이 무조건 일반화하려는 경향이 오류의 원인임이 밝혀졌다. 학생들에게 이진법 상자를 시각적으로 제시한 결과, 학생들은 승패에 따른 패턴을 쉽게 발견하고 게임 활동을 통하여 필승전략을 인식하게 되었으며 일부 학생들은 발견한 필승전략을 정당화하는 단계에 도달할 수 있었다.

  • PDF

조태구(趙泰耉)의 주서관견(籌書管見)과 기하원본(幾何原本) (Jo Tae-gu's Juseo Gwan-gyeon and Jihe Yuanben)

  • 홍성사;홍영희;김창일
    • 한국수학사학회지
    • /
    • 제31권2호
    • /
    • pp.55-72
    • /
    • 2018
  • Matteo Ricci and Xu Gwangqi translated the first six Books of Euclid's Elements and published it with the title Jihe Yuanben, or Giha Wonbon in Korean in 1607. It was brought into Joseon as a part of Tianxue Chuhan in the late 17th century. Recognizing that Jihe Yuanben deals with universal statements under deductive reasoning, Jo Tae-gu completed his Juseo Gwan-gyeon to associate the traditional mathematics and the deductive inferences in Jihe Yuanben. Since Jo served as a minister of Hojo and head of Gwansang-gam, Jo had a comprehensive understanding of Song-Yuan mathematics, and hence he could successfully achieve his objective, although it is the first treatise of Jihe Yuanben in Joseon. We also show that he extended the results of Jihe Yuanben with his algebraic and geometric reasoning.