• Title/Summary/Keyword: Decomposition behaviors

Search Result 105, Processing Time 0.024 seconds

Cesium and strontium recovery from LiCl-KCl eutectic salt using electrolysis with liquid cathode

  • Jang, Junhyuk;Lee, Minsoo;Kim, Gha-Young;Jeon, Sang-Chae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3957-3961
    • /
    • 2022
  • Deposition behaviors of Sr and Cs in various liquid cathodes, such as Zn, Bi, Cd, and Pb, were examined to evaluate their recovery from LiCl-KCl eutectic salt. Cations in the salt were deposited on the liquid cathode, exhibiting potential of -1.8 to -2.1 V (vs. Ag/AgCl). Zn cathode had successful deposition of Sr and exhibited the highest recovery efficiency, up to 55%. Meanwhile, the other liquid cathodes showed low current efficiencies, below 18%, indicating LiCl-KCl salt decomposition. Sr was recovered from the Zn cathode as irregular rectangular SrZn13 particles. A negligible amount of Cs was deposited on the entire liquid cathode, indicating that Cs was hardly deposited on liquid cathodes. Based on these results, we propose that liquid Zn cathode can be used for cleaning Sr in LiCl-KCl salt.

Thermal and Electrical Behaviors of Polyethylene Oxide/Polyaniline Fibers Prepared by Electrospinning Method (전기방사법에 의해 제조된 폴리에틸렌옥사이드/폴리아닐린 섬유의 열적 및 전기적 거동)

  • Kim, Seok;Cho, Mi-Hwa;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.16-21
    • /
    • 2006
  • In this study, PEO blend fibers mixed with polyaniline (PANI)/10-camphor sulfonic acid (CSA) and PANI/dodecylbenzene sulfonic acid (DBSA) were electro spun to investigate the influence of PANI content. CSA and DBSA were used as a functionalized doping acid having a bulky volume. PANI/PEO blend solution was prepared by dissolving PEO and PANI doped with CSA or DBSA. The thermal properties were measured by thermogravimetric analyzer (TGA). As a result, with increasing of the PANI content in PANI/CSA and PANI/DBSA, although initial decomposition temperature (IDT) was decreased, thermal stability was increased due to the increase of $A^*{\cdot}K^*$ and integral procedural decomposition temperature (IPDT). The electrical conductivities measured by the 4-probe method. The electric conductivity was increased with increasing of PANI content in PANI/CSA and PANI/DBSA. However, electrical conductivity did not change significantly beyond 30% content of PANI. From CV results, PANI/CSA showed the better defined peak shpae and higher peak current density compared to PANI/DBSA. This was probably related to the slightly higher electrical conductivity or better morphology for easy charge transfer in the case of PANI/CSA.

Thermal, Frictional and Wear Behavior of Carbon Nanofiber/Poly(methyl methacrylate) Composites (탄소나노섬유/폴리(메틸 메타크릴레이트) 복합재료의 열적 및 마찰 마모 거동 연구)

  • Park Soo-Jin;Im Se-Hyuk;Lee Jae-Rock;Rhee John-M.
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.385-390
    • /
    • 2006
  • In this work, the effect of carbon nanofiber (CNF) on thermal properties, and friction and wear behavior of CNF/PMMA composites were examined. While thermal properties of the composites were investigated with differential scanning calorimetry, thermograyimetric analyzer, and dynamic mechanical analyzer friction and wear behaviors were examined using a friction and wear tester. The glass transition temperature (Tg), integral procedural decomposition temperature (IPDT), storage modulus (E'), and tan ${\delta}$ appeared at higher temperatures with increasing CNF content, which were probably attributed to the presence of strong interactions between the carbonaceous fillers and the PMMA resins matrix. The wear loss in the composites decreased at 0.1 wt% CNF and then increased with 5-10 wt% CNF content. This was due to the existence of large aspect ratio CNF in PMMA which led to an alignment of PMMA chains and an increase of mechanical interlocking, resulting in the formation of crosslinked structures between CNF and PMMA in the composite.

Analysis of Export Behaviors of Busan, Incheon and Gwangyang Port (부산항, 인천항, 광양항의 수출행태분석)

  • Mo, Soowon;Chung, Hongyoung;Lee, Kwangbae
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.3
    • /
    • pp.35-46
    • /
    • 2016
  • This study investigates the export behavior of Busan, Gwangyang and Incheon Port. The monthly data cover the period from January 2000 to December 2015. We employ six export functions composed of various exchange rates and industrial production index. This paper finds that the nominal effective exchange rate is more appropriate for explaining the export behaviors of the three ports, regardless of the narrow and wide indices which comprise 26 and 61 economies for the nominal and real indices respectively. This paper tests whether exchange rate and industrial production are stationary or not, rejecting the null hypothesis of a unit root in each of the level variables and of a unit root for the residuals from the cointegration at the 5 percent significance level. The error-correction model is estimated to find that both Gwangyang and Incheon ports are much slower than Busan port in adjusting the short-run disequilibrium and Gwangyang port is a little slower than Incheon port. The rolling regressions show that the influence of exchange rate as well as industrial production tends to decrease in all of three ports. The variance decomposition, however, shows that the export variables are very exogenous and the export of Busan Port is the least exogenous and that of Gwangyang Port the most. This result indicates that the economic variables such as exchange rate and economic activity affect the export of Busan Port more strongly than that of Gwangyang and Incheon Port.

Effects of Methacrylamide Treatment on Silk Fibers II. Thermal Behavior of Methacrylamide-treated Silk Fibers (견섬유에 대한 메타크릴아미드의 처리효과 II. 메타크릴아미드 처리견의 열적 거동에 관하여)

  • 신봉섭;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.1
    • /
    • pp.49-56
    • /
    • 1992
  • Treatment of vinyl monomers onto silk fiber modifies the properties of the original silk fiber considerably. This field has been the subject of investigation by many workers using chemical and radiation initiation. Many studies on the reaction conditions, polymerization mechanism, physical properties and practical performances of methacrylamide-treated silk fiber have been continued. However, the polymerization mechanism has not been clearly revealed yet and this remains ambiguously whether the grafting is formed on fiber or not. In general, it has been accepted that free radicals were formed and vinyl monomers were polymerized in silk fibroin by graft polymerization mechanism, while active sties were varied by the types of monomer and initiator as well as by the reaction conditions. On the other hand, there is another argument on polymerization mechanism, in which monomers are polymerized and impregnated in the internal side of the fiber by homopolymerization. Though a large number of analytical methods are used to examine the polymerization mechanism of methacrylamide-treated silk fiber, the results on the basis of thermal analysis are merely reported in this paper. In differential scanning calorimetry (DSC) analysis, the thermal decomposition behaviors of the methacrylamie-treated silk fibers were determined and compared to those of the controlled silk fibers. DSC curves obtained from the methacrylamide-treated silk fibers showed double peaks at around 290$^{\circ}C$ (A peak) and 320$^{\circ}C$ (B peak) which are attributed to the thermal decomposition of the methacrylamide polymer and silk fibroin fiber, respectively. The temperature of A and B peak shifted to higher value with the increase of add-on. Also, the moisture regain of the treated silk fibers increased with add-on.

  • PDF

Vibration Analysis of AFM Microcantilevers Using an Equivalent Stiffness Element Model (등가강성요소 모델을 이용한 AFM 마이크로캔틸레버의 진동해석)

  • Han, Dong Hee;Kim, Il Kwang;Lee, Soo Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.461-466
    • /
    • 2015
  • Atomic force microscopy (AFM) is powerful tool for determining properties of samples based on interactions between the sample surface and an approaching probe tip. In this study, we modeled the interactions between the sample and the tip of the AFM microcantilever as a single nonlinear spring with an equivalent stiffness element and simulated the dynamic behaviors of the AFM microcantilevers using the finite element method (FEM) and ANSYS software. With the simulation results, we analyzed the complex dynamic responses of the AFM cantilever using proper orthogonal decomposition (POD). In addition, we compared the simulation and experimental results using the same method. Consequently, we suggest an effective method to express the interaction between the tip and sample, and we confirm that the influence of the higher order model due to the interaction between the tip and sample is increased.

Influence of thermal treatment on the dissolution of hydroxyapatite powders in simulated body fluid (수산화아파타이트 분말의 열처리가 유사생체용액 내 용해거동에 미치는 영향)

  • Song, Dae-Sung;Seo, Dong-Seok;Lee, Jong-Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • Commercial hydroxyapatite (HA) powders were calcined at the temperature range of $1000{\sim}1350^{\circ}C$ in air, for 2h, and the calcined powders were immersed in simulated body fluid (SBF) of pH 7.4 at $37^{\circ}C$ for 3 or 7 days. Thermal decomposition and their related dissolution behaviors of hydroxyapatite were investigated by XRD, FT-IR, and TEM. At the temperature of $1200^{\circ}C$, HA gradually releases its $OH^-$ ions and transforms to OHAP((oxyhydroxyapatite, ($Ca_{10}(PO_4)_6O_x(OH)_{2-2x}$)). HA thermally decomposes to ${\alpha}-TCP$ (${\alpha}-tricalcium$ phosphate) and TTCP (tetracalcium phosphate) phase at $1350^{\circ}C$. It was found that the surface dissolution of the hydroxyapatite powders was accelerated by non-stoichiometric composition and decomposed to ${\alpha}-TCP$ and TTCP.

Application of Parallel Processing System for free drop simulation of IT-related modules (IT 모듈의 자유 낙하 모사를 위한 병렬처리시스템의 적용)

  • Park Y.J.;Lee J.S.;Ko H.O.;Chang Y.S.;Choi J.B.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.405-406
    • /
    • 2006
  • Recently, the flat display modules such as plasma or TFT-LCD employ thin crystallized panels which are normally weak to high level transient mechanical energy inputs. As a result, anti-shock performance is one of the most important design specifications for TFT-LCD modules. However, most of large display module designs are generated based on engineers own experiences. Also, a large-scale analysis to evaluate complex material and structural behaviors is one of interesting topic in diverse engineering and scientific fields. The utilization of massively parallel processors has also been a recent trend of high performance computing. The objective of this paper is to introduce a parallel process system which consists of general purpose finite element analysis solver as well as parallelized PC cluster. The parallel processing system is constructed using thirty-two processing elements and the finite element program is developed by adopting hierarchical domain decomposition method. In order to verify the efficiency of the established system, an impact analysis on thin and complex sub-parts of flat display modules is performed. The evaluation results showed a good agreement with the corresponding reference solutions, and thus, the parallel process system seems to be a useful tool fur the complex structural analysis such as IT related products.

  • PDF

Characterization of Co-AC/TiO2 Composites and Their Photonic Decomposition for Organic Dyes

  • Chen, Ming-Liang;Son, Joo-Hee;Park, Chong-Yun;Shin, Yong-Chan;Oh, Hyun-Woo;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.429-433
    • /
    • 2010
  • In this study, activated carbon (AC) as a carbon source was modified with different concentrations of cobalt chloride ($CoCl_2$) to prepare a Co-AC composite, and it was used for the preparation of Co-AC/$TiO_2$ composites with titanium oxysulfate (TOS) as the titanium precursor. The physicochemical properties of the prepared Co-AC/$TiO_2$ composites were characterized by $N_2$ adsorption at 77 K, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. The photocatalytic treatments of organic dyes were examined under an irradiation of visible light with different irradiation times. $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine AC, which was $389\;m^2/g$. From the XRD results, the Co-AC/$TiO_2$ composites contained a mixturephase structuresof anatase and rutile, but a cobalt oxide phase was not detected in the XRD pattern. The EDX results of the Co-AC/$TiO_2$ composites confirmed the presence of various elements, namely, C, O, Ti, and Co. Subsequently, the decomposition of methylene orange (MO, $C_{14}H_{14}N_3NaO_3S$) and rhodamine B (Rh.B, $C_{28}H_{31}ClN_2O_3$) in an aqueous solution, respectively, showed the combined effects of an adsorption effect by AC and the photo degradation effect by $TiO_2$. Especially, the Co particles in the Co-AC/$TiO_2$ composites could enhance the photo degradation behaviors of $TiO_2$ under visible light.

Cure Behaviors of Epoxy Resin Initiated by Methylanilinium Salts as Latent Cationic Curing Agent (잠재성 양이온 경화제인 Methylanilinium염에 의해 개시된 에폭시 수지의 경화 거동)

  • 박수진;김택진;이창진;이재락;박정규
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.168-176
    • /
    • 2001
  • The effect of novel N-crotyl-N,N-dimethyl-4-methylanilinium hexafluoroantimonate (CMH) curing agent as a thermal latent initiator on thermal behaviors, rheological properties, and thermal stability of diglycidylether of bisphenol A (DGEBA) epoxy cationic system was investigated. From DSC measurements of DGEBA/CMH system, it was shown that this system exhibits an excellent thermal latent characteristic at a given temperature. The conversion and conversion rate of DGEBA/CMH system increased with increasing the concentration of initiator, due to high activity of CMH. Rheological properties of the system were investigated under isothermal condition using a rheometer The gelation time was obtained from the analysis of storage modulus (G'), loss modulus (G"), and damping factor (tan $\delta$). As a result, the reduction of gelation time was affected by high curing temperature and concentration of CMH, resulting in high degree of network formation in cationic polymerization, due to difference of activity. The thermal stability of the cured epoxy resin was discussed in terms of the activation energy for decomposition and thermal factors determined from TGA measurements.ents.

  • PDF