Browse > Article

Thermal, Frictional and Wear Behavior of Carbon Nanofiber/Poly(methyl methacrylate) Composites  

Park Soo-Jin (Department of Chemistry, Inha University, Advanced Materials Division, Korea Research Institute of Chemical Technology)
Im Se-Hyuk (Department of Chemistry, Inha University, Advanced Materials Division, Korea Research Institute of Chemical Technology)
Lee Jae-Rock (Department of Chemistry, Inha University, Advanced Materials Division, Korea Research Institute of Chemical Technology)
Rhee John-M. (Department of Advanced Organic Materials Engineering, Chonbuk National University)
Publication Information
Polymer(Korea) / v.30, no.5, 2006 , pp. 385-390 More about this Journal
Abstract
In this work, the effect of carbon nanofiber (CNF) on thermal properties, and friction and wear behavior of CNF/PMMA composites were examined. While thermal properties of the composites were investigated with differential scanning calorimetry, thermograyimetric analyzer, and dynamic mechanical analyzer friction and wear behaviors were examined using a friction and wear tester. The glass transition temperature (Tg), integral procedural decomposition temperature (IPDT), storage modulus (E'), and tan ${\delta}$ appeared at higher temperatures with increasing CNF content, which were probably attributed to the presence of strong interactions between the carbonaceous fillers and the PMMA resins matrix. The wear loss in the composites decreased at 0.1 wt% CNF and then increased with 5-10 wt% CNF content. This was due to the existence of large aspect ratio CNF in PMMA which led to an alignment of PMMA chains and an increase of mechanical interlocking, resulting in the formation of crosslinked structures between CNF and PMMA in the composite.
Keywords
carbon nanofiber; Poly (methyl methacrylate); thermal properties; friction and wear behaviors;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 J. B. Donnet and R. C. Bansal, Carbon Fibers, 2nd ed, Marcel Dekker, New York, 1990
2 D. R. Paul and S. Newman, Polymer Blends, Academic Press, New York, 1978
3 S. J. Park, K. S. Cho, and C. G. Choi, J. Colloid Interf Sci., 258, 424 (2003)   DOI   ScienceOn
4 M. J. Galante, P. A. Oyanguren, K. Andromaque, P. M. Frontini, and R. J. J. Williams. Polym. Int., 48, 642 (1999)   DOI   ScienceOn
5 A. Oberlin and M. Endo, J. Cryst. Growth, 32, 335 (1976)   DOI   ScienceOn
6 K. Lozano, J. Bonilla-Rios, and E. V. Barrera, J. Appl. Polym. Sci., 80, 1162 (2001)   DOI   ScienceOn
7 T. Muhl, J. Kretz, I. Monch, C. M. Schneider, H. Bruckl, and G. Reiss, Appl. Phys. Lett., 76, 786 (2000)   DOI   ScienceOn
8 W. Brandl, G. Marginean, V. Chirila, and W. Warchewski, Carbon, 42, 5 (2004)   DOI   ScienceOn
9 S. J. Park, E. J. Lee, and J. R. Lee, Polymer(Korea), 29, 481 (2005)
10 K. Friedrich, Friction and Wear of Polymer Composites, Elsevier, New York, 1986
11 S. J. Park and B. R. Jun, J. Colloid Interf. Sci., 284, 204 (2005)   DOI   ScienceOn
12 S. J. Park, M. K. Seo, and J. R. Lee, Carbon, 40, 835 (2002)
13 G. M. Wu, Master. Chem. Phys., 85, 81 (2004)   DOI   ScienceOn
14 L. Gmble, Friction and Lubrication in Mechanical En-gineering, Krayn, Berlin, 1925
15 T. C. Chang, C. L. Liao, K. H. Wu, H. B. Chen, and J. C. Yang, Polym, Degrad. Stab., 66, 127 (1999)   DOI   ScienceOn
16 X. Wu, Z. Wang, L. Chen, and X. Huang, Carbon, 42, 1965 (2004)   DOI   ScienceOn
17 H. C. Sin, N. Saka, and N. P. Suh, Wear, 55, 163 (1979)   DOI   ScienceOn
18 M. K. Seo, S. J. Park, and S. K. Lee, J. Colloid Interf. Sci., 285, 306 (2005)   DOI   ScienceOn
19 X. Shui and D. D. L. Chung, J. Mater. Sci., 35, 1773 (2000)   DOI   ScienceOn
20 H. H. Horowitz and G. Metzger, Anal. Chem., 35, 1464 (1963)   DOI
21 K. Lozano and E. V. Barrera, J. Appl. Polym. Sci., 80, 125 (2001)
22 Z. Jin, K. P. Pramoda, G. Xu, and S. H. Goh, Chem. Phys. Lett., 337, 43 (2001)   DOI
23 J. Zeng, B. Saltysiak, W. S. Johnson, D. A. Schiraldi, and S. Kumar, Composites B, 35, 245 (2004)   DOI   ScienceOn
24 S. J. Park, B. R. Jun, and D. H. Suh, J. Korean Ind. Eng. Chem., 13, 119 (2002)
25 R. D. Patton, C. U. Pittman, L. Wang, and J. R. Hill, Composites A, 30, 1081 (1999)   DOI   ScienceOn
26 C. Gauthier, L. Chazeau, T. Prasse, and J. Y. Cavaille, Compo. Sci. Technol., 65, 335 (2005)   DOI   ScienceOn
27 O. S. Carneiro, J. A. Covas, C. A. Bernardo, G. Caldiera, F. W. J. van Hattum, J. M. Ting, R. L. Alig, and M. L. Lake, Compo. Sci. Technol., 58, 401 (1998)   DOI   ScienceOn
28 J. K. Lancaster, J. Phys. D: Appl. Phys., 1, 549 (1968)   DOI   ScienceOn
29 G. G. Tibbetts, NATO Sci. Ser., Ser. E: Appl. Sci., 372, 1 (2001)
30 P. K. Mallick, Fiber-reinforced Composites, Marcel Dekker, New York, 1988
31 K. L. Lau and D. Hui, Composites B, 33, 263 (2002)   DOI   ScienceOn
32 J. Xu, J. P. Donohoe, and C. U. Pittman, Composites A, 35, 693 (2004)   DOI   ScienceOn
33 H. E. Hintermann, Wear, 100, 381 (1984)   DOI   ScienceOn
34 D. D. L. Chung, Carbon, 39, 279 (2001)   DOI   ScienceOn
35 D. R. Lee, H. Y. Kim, T. M. MA, S. Y. Park, and M. K. Seo, J. Korean Fiber Soc., 40, 2 (2003)
36 M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, and M. S. Dresselhaus, Carbon, 39, 1287 (2001)   DOI   ScienceOn