• Title/Summary/Keyword: Decentralized method

Search Result 243, Processing Time 0.022 seconds

Decentralized Sliding Mode Feedback Control Design Method for a Large Scale System with a Poly topic Models (폴리토픽 모델을 갖는 대규모 시스템을 위한 비집중화 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2010
  • Based on the sliding mode control theory, a decentralized controller design method is developed for a large scale system with a poly topic model. In terms of LMIs, we derive sufficient conditions for the existence of the decentralized controller guaranteeing a stable sliding motion. We also give an LMI-based control design algorithm. Finally, the proposed method is applied to decentralized stabilization of double-inverted pendulums. Simulation results show that our method gives not only the robust stability but perfect rejection of norm-bounded uncertainties.

Decentralized H$\infty$Controller Design-reduced order observers approach

  • Jo, Cheol H.;Lee, Sang-Hyek;Seo, Jin H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.52-55
    • /
    • 1996
  • In this paper, we consider the decentralized reduced-order H$_{\infty}$ controller for the general plant. Simplifying method is suggested for the general plant with the decentralized controller structure. When the controller is reconstructed for the original system, the decentralizability of the controller for the transformed system is generally destroyed with the older method. We solve this problem. For the simplified system, the structure of the decentralized controller is suggested..

  • PDF

Design of Decentralized State Observer for Large Scale Interconnected System (대규모 연결계의 분산상태관측기 설계)

  • 이기상;장민도
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.2
    • /
    • pp.122-129
    • /
    • 1988
  • A design method of decentralized state observer for large scale interconnected systems is proposed by the use of interconnection rejection approach and interconnection modelling technique. The proposed design method is developed based on the interconnection partitioning. Therefore partitioning conditions are suggested. And the conditions for observer pole assignment and observer parameter determination procedures are described for possible interconnection patterns. The decentralized state observer gives good estimates without any information on the interconnection variables and estimations. In addition, a numerical example is given to explain the design procedures and to show the estimation performance of the decentralized observer.

  • PDF

A TRUST REGION METHOD FOR SOLVING THE DECENTRALIZED STATIC OUTPUT FEEDBACK DESIGN PROBLEM

  • MOSTAFA EL-SAYED M.E.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.1-23
    • /
    • 2005
  • The decentralized static output feedback design problem is considered. A constrained trust region method is developed that solves this optimal control problem when a complete set of state variables is not available. The considered problem is interpreted as a non-linear (non-convex) constrained matrix optimization problem. Then, a decentralized constrained trust region method is developed for this problem class exploiting the diagonal structure of the problem and using inexact computations. Finally, numerical results are given for the proposed method.

A Comparison of Decentralized and Partially Observed Supervisors: Application to a CIM Testbed (분산 감독제어기와 부분관측 감독제어기의 비교: CIM Testbed 응용)

  • Son, Hyoung-Il;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1155-1164
    • /
    • 2008
  • Supervisory control theory, which was first proposed by Ramadge and Wonahm, is a well-suited control theory for the control of complex systems such as semiconductor manufacturing systems, automobile manufacturing systems, and chemical processes because these are better modeled by discrete event models than by differential or difference equation models at higher levels of abstraction. Moreover, decentralized supervisory control is an efficient method for large complex systems according to the divide-and-conquer principle. Decentralized supervisors cannot observe the events those of which occur only within the other supervisors. Therefore decentralized supervisors can be designed according to supervisory control theory under partial observation. This paper presents a solution and a design procedure of supervisory control problem (SCP) for the case of decentralized control and SCP under partial observation (SCPPO). We apply the proposed design procedure to an experimental CIM Testbed. And we compare and analyze the designed decentralized supervisors and partially observed supervisors.

Design of Robust $H_\infty$ Control for Interconnected Systems: A Homotopy Method

  • Chen Ning;Ikeda Masao;Gui Weihua
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2005
  • This paper considers a robust decentralized $H_\infty$ control problem for uncertain large-scale interconnected systems. The uncertainties are assumed to be time-invariant, norm-bounded, and exist in subsystems. A design method based on the bounded real lemma is developed for a dynamic output feedback controller, which is reduced to a feasibility problem for a nonlinear matrix inequality (NMI). It is proposed to solve the NMI iteratively by the idea of homotopy, where some of the variables are fixed alternately on each iteration to reduce the NMI to a linear matrix inequality (LMI). A decentralized controller for the nominal system is computed first by imposing structural constraints on the coefficient matrices gradually. Then, the decentralized controller is modified again gradually to cope with the uncertainties. A given example shows the efficiency of this method.

A design method of decentralized control system by sequential loop closing

  • Takemori, Fumiaki;Okuyama, Yoshifumi;Chen, Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.16-19
    • /
    • 1994
  • This paper describes a design method of compensators for decentralized control systems. Decentralized control problem is convenient to design multi-variable control systems and formulated as a series of independent designs. The proposed design method is composed of some steps, which is sequentially to close loop of the system diagonalized by regarding interactive subsystem as perturbation for current loop. So, on the basis of H$_{\infty}$ control theory, decentralized controllers are designed considering robust stability for diagonal systems with perturbations. A numerical example shows that the proposed design method is effective for multivariable control systems..

  • PDF

Structural damage detection using decentralized controller design method

  • Chen, Bilei;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.779-794
    • /
    • 2008
  • Observer-based fault detection and isolation (FDI) filter design method is a model-based method. By carefully choosing the observer gain, the residual outputs can be projected onto different independent subspaces. Each subspace corresponds to the monitored structural element so that the projected residual will be nonzero when the associated structural element is damaged and zero when there is no damage. The key point of detection filter design is how to find an appropriate observer gain. This problem can be interpreted in a geometric framework and is found to be equivalent to the problem of finding a decentralized static output feedback gain. But, it is still a challenging task to find the decentralized controller by either analytical or numerical methods because its solution set is, generally, non-convex. In this paper, the concept of detection filter and iterative LMI technique for decentralized controller design are combined to develop an algorithm to compute the observer gain. It can be used to monitor structural element state: healthy or damaged. The simulation results show that the developed method can successfully identify structural damages.

New interaction measures for decentralized control systems

  • Lee, Moonyong;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.835-840
    • /
    • 1989
  • We present new efficient interaction measures which can be used for control operability analysis and Control Structure selection in decentralized control systems. These measures can indicate not only the stability of decentralized control systems but also the true closed-loop Performance of the decentralized control structure. Relationships between published measures and proposed ones are clarified. Some important characteristics of these. measures are rigorously analyzed. The significance and the usefulness of the proposed method have been illustrated through examples found in the literature.

  • PDF

Decentralized Filters for the Formation Flight

  • Song, Eun-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.19-29
    • /
    • 2002
  • Decentralized filtering for a formation flight instrumentation system by INS/GPS integration is considered in this paper. An elaborate tuning method of the measurement noise covariance is suggested to compensate modeling errors caused by decentralizing the extended Kalman filter. It does not require large data transfer between formation vehicles. Covariance analysis exhibits the superior performance of the proposed approach when compared with the existent decentralized filter and the global filter, which has the target-filter performance.