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Design of Robust H,, Control for Interconnected Systems:
A Homotopy Method

Ning Chen, Masao Ikeda, and Weihua Gui

Abstract: This paper considers a robust decentralized H,, control problem for uncertain large-
scale intercomnected systems. The uncertainties are assumed to be time-invariant, norm-
bounded, and exist in subsystems. A design method based on the bounded real lemma is
developed for a dynamic output feedback controller, which is reduced to a feasibility problem
for a nonlinear matrix inequality (NMI). It is proposed to solve the NMI iteratively by the idea
of homotopy, where some of the variables are fixed alternately on each iteration to reduce the
NMI to a linear matrix inequality (LMI). A decentralized controller for the nominal system is
computed first by imposing structural constraints on the coefficient matrices gradvally. Then,
the decentralized controller is moditied again gradually to cope with the uncertainties. A given

example shows the efficiency of this method.
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1. INTRODUCTION

Decentralized H., control problems for large-scale

interconnected systems have been paid much attention.

A homotopy method was presented using a matrix
inequality for design of a decentralized H,, controller
by lkeda, et al. [4], where the system was deformed
from the disconnected one to the connected .one by
increasing the interconnections between subsystems
gradually. It was shown that the idea could be used to
compute a controller which is robust to polytopic
changes in interconnections. A design method for 2-
channel systems using the stable factorization
approach was proposed by Seo, et al. [8]. In {7],
Scorletti and Duc considered dynamics in
interconnections, and designed each local controller
so that the corresponding closed-loop subsystem had a
certain input-output disspative property to guarantee a
specified H,, performance of the overall closed-loop
system. An extension to decentralized H., control for
nonlinear interconnected system was given in [12].
Since system models always contain uncertainties,
expected performances cannot be attained if the
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controller is designed only for the nominal model.
This is especially true in the case of large-scale
systems. Thus, it is desired that control system design
be able to take into account modeling errors in the
system. A few results on robust decentralized H.
control for interconnected systems with parameter
uncertainty have been obtained. The robust
decentralized H., control problem was converted into a
scaled H., control problem for decoupled subsystems
with no uncertainty by Wang, er al. [11]. A sufficient
condition for solvability of the problem has been
given. In [9], Shang and Sun applied the approach of
Ikeda, et al. [4] to the case of norm-bounded
uncertainties, which might exist in subsystems as well
as interconnections. An extension to robust
decentralized H, control for nonlinear uncertain
interconnected systems was given in {2].

It has been well known that LMI-based approaches
[1,3,5] are very powerful for centralized controller
design.- However, it is not true in the decentralized
case, where controller design problems cannot be
reduced to a feasibility problem for LMIs because of
the structural constraint on the controller, i.e., block-
diagonal forms of coefficient matrices.

This paper considers a robust decentralized H.,
control  problem for uncertain large-scale
interconnected systems. The uncertainties are assumed
to be time-invariant, norm-bounded, and exist in
subsystems. A design method based on the bounded
real lemma is developed for a dynamic output
feedback controller, which is reduced to a feasibility
problem for a NMI. It is proposed to solve the NMI
iteratively by the idea of homotopy, where some of the
variables are fixed alternately on each iteration to
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reduce the NMI to a LMI. A decentralized controller
for the nominal system is computed first by imposing
structural constraints on the coefficient matrices
gradually. Then, the decentralized -controller is
modified again gradually to cope with the
uncertainties. A given example shows the efficiency
of this method.

This paper is organized as follows. Section 2 is
devoted to the formulation of the robust decentralized
uncertain H,, control problem. Section 3 provides a
sufficient condition for a decentralized H,, controller
to exist without uncertainties. In Section 4, a
computation algorithm is proposed using a homotopy
method. The discussion is extended in Section 5 to the
case with uncertainties in subsystem matrices. In
Section 6, a computation algorithm for a robust

controller is proposed using a homotopy method again.

An example is presented in Section 7, which
demonstrates the efficiency of the proposed algorithm.

2. PROBLEM DESCRIPTION

We consider an uncertain large-scale interconnected
system composed of N subsystems

N
+(By; + 6By u (1) + z A;x (1),

Jj=1,j#i (1
z;(1) = Cyx; (1) + Dy (1)
yi(t) = C2ixz'(t) +D21iwi(t) , =12, -+, N,
where x;(1)eR™, w(t)e R, u;(tye R™ , z,(tye R,
and y,(H)eR”
control input, controlled output, and measured output
vectors, rtespectively. The matrices A4;, By;, By;,

iis
Ciis Cois Dy and  of

appropriate dimensions. The matrix A4; describes

are the state, disturbance input,

and D,;; are constant

the interconnection from subsystem j to subsystem i.
The matrices d4; and OB,; denote time-invariant

uncertainties in the system and control input matrices.
We suppose that

[64; 0By )= E;A[Gy Gyl 2

where E;,Gy;,G,;” are known constant matrices, and

A, is an unknown time-invariant matrix satisfying
A <T
id; s 1 3)

We assume that the triplet (4

and detectable.
The whole large-scale system is written as

B,;,Cy;) is stabilizable

i1

X = (A + 5A)x+ Blw+ (Bz + §B2)u,
= (4 + EAG)x + Byw + (B, + EAG, )u,

4

Z=C1X+D12u, ( )
y=C2x+D21w,
where

A:[Ag']NxN,

=diag{By, -, Biy }, By =diag{By,, By},

C1 = diag{Cy,,-+,Ciy }, Cy =diag{Cyy,+,Con },
Dy, =diag{Dyy;,-+, Dian },
D21—diag{D2”, DZIN}

6A = diag{84,,,--, 5y }, OB, = diag{dBy,, -, By

E =diag{E,,-,Ey }, A=diag{A,,---,Ay},
G, =diag{Gy, -, Gy }, G, =diag{Gy), -, Gy },

T T T T
x:[xl cen xN]T, W=[W1 cee WN]T, (5)
o T B S

T T
B FI ¢

We adopt a strictly proper output feedback controller
described by

Xei = Acixci + Bciyh

u, =Cyxy, i=1,2, -, N,

for ]

(6)

where x,; € R" is the state of the i-th local controller,
and 4., B,

determined. Then, the closed-loop system composed
of (1) and (6) is written as

C ., are constant matrices to be

cr?

xcl :Aclxcl +BC]W5

(7N
z=Cyx,,
where
xg=[x" x 1", x _Lcl ch]r
_|A+dé4 (B +3B,)C, B - B,

o BCCZ Ac P el BCD21 ’
Cy=[C, DpC.])

A, =diag{d,,, -, Ay }, B, =diag{B.;,-, By b

’CCN}'

T,(s) from the disturbance

C, =diag{C,,, -

The transfer function
input w to the controlled output z is
-1
T, = Cy(sl — Ay) By
We say that the system (1) is stabilizable with the
disturbance attenuation level y if the closed-loop
system (7) is stable and satisfies |T,,[_ <y , where

v is a specified positive number. The control problem
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of this paper is to design a decentralized controller (6)
realizing such a closed-loop system.

To solve the decentralized control problem, we
employ the following lemmas.

Lemma 1 (Bounded Real Lemma, [3,5]): The
following statements are equivalent:

(i) Ay isastable matrix and |T,,|| < 7.
(i) There exists a positive definite matrix P which
satisfies the LMI:
ALP+P4, PB, C)
BLP -4 0 |<0. (8)
C 7 0 - }/]

C

Lemma 2 [10]: Suppose that £, G, and A are

matrices of appropriate dimensions and ATA <.
Then, for any & >0, the inequality

EAG+GTATET < eEET + 767G
holds.

3. CONTROLLER DESIGN FOR NOMINAL
CASE

First, we consider the case where no uncertainfy
exists, ie, M; =0, 8B; =0. A decentralized H,
output feedback controller is given as follows.

Theorem 1: For a given constanty >0, the system
(1) with no uncertainty is stabilizable with the
disturbance attenuation level y by a decentralized
controller (6), if there exist positive definite block-

diagonal matrices X, Y and block-diagonal matrices F),
L, O as a solution set to the inequalities

XY, F,L,Q)=
Ji I B, x¢ +FTDY
Iy, Iy YB, + LDy, ar
Bf Bly+pj,I" —yI 0
CX + D, F G 0 el
<0, €))
0 (10)
> 2
I Y
where
Jyy = AX + X4" + ByF + FTB],
Iy = A" +YAX + L C, X +YB,F +Q, (n

Joy = YA+ ATY + LC, +CT LT,

and the sizes of submatrices in the block-diagonal
matrices are compatible with the dimensions of the
state, input, and output vectors of subsystems. Then,

the coefticient matrices of a decentralized H., output

 feedback controller (6) are given by

A =v'ouT, B, =v'L, c,=FU"T, (12)

where the matrices U and ¥ are block-diagonal and
determined by the equation

vt =1-xv. (13)

Proof: Using the solutions to (9), (10), and (13), we
define a symmetric matrix

Y %
F= {VT vlxvxuT—uTxuT | (14)

which is positive definite. The positive definiteness of
P can be shown by the Schur complement and the fact
that ¥'> 0 and

v'xyxuT —uttxuTT -y ly

U xyx -x - -xvyyla-vou T (15)

vl x-vyhuT

>0,
which is equivalent to (10). We then substitute
Q=vAaU", L=VB,, F=C,U " into (9), and rewrite
it to obtain

nfuyp+raHn, nfpe, nfck

Bl P, —i 0 |<0,(16)
Cc,II, 0 -A
where
X 1
[T, = . 17
o) an)
By pre- and post-multiply (16) by
;" o o [yt 0 0
o I 0,0 I of (18)

0 01 0 0 1

respectively, we obtain (8) and conclude by Lemma 1
that the closed-loop system (7) is stable with the
disturbance attenuation level y . O

A simple choice of U and ¥V satisfying (13) is
U=1-XY and V=I. We take this choice in the
example of Section 7.

The idea of Theorem 1 is standard for centralized
H,, controller design [6], where we do not impose any
structural constraint on the matrices X, Y, F, L, Q, and
by choosing Q suitably, we can eliminate the bilinear
term J,; so that BMI (9) becomes an LMI. Thus, in

the centralized control case, the H,, control problem
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can be transformed to feasibility of LMIs. However,
in the decentralized control case, the solution matrices
have to be block-diagonal and BMI (9) cannot be
converted to an LMI.

4. A SOLUTION ALGORITHM FOR
NOMINAL CASE

In order to solve BMI (9), we fix a group of
variables to make it an LMI. First, we fix the variables
Y and L, then BMI (9) becomes an LMI in X, F, and Q.
Next, we fix the variables X and F, then BMI (9)
becomes another LMI. By solving these two problems
alternately, we expect that we obtain a solution of the
BML.

This idea is successful if the values of fixed
variables are chosen suitably. However, such a choice
is equivalent to finding a solution of the BMI, and
there is no obvious way. To find a suitable choice, we
introduce an iterative method [13]. That is, we use a
homotopy method with a real number A varying
from 0 to 1, which defines a matrix function

H(X,Y,F,L,0,)=T(X,Y,F,L,(1- A)Qp + Q) <0,
(19)
where J,; in (9) is replaced by

Joy= AT +YAX +L C, X +YB,F +(1— )Op + A0,
21 2 2 F

(20)
and Qp is afixed full matrix. Then,
T(X,Y,F,L A=0
H(X,Y,F,L,Q,/l):{ (XY.F.LOR), =0 )
T(X,Y,F,L,0),A=1

and the problem of finding a solution to (9) is
embedded in the parametrized family of problems

H(X,Y,F,L,0,2)<0, Ae[0,l]. (22)

We start computing the solution to (22) and (10)
with 4 =0, which we denote by X,,Y,,F,,Lyand
QOr. These initial values are computed by solving (9)

and (10) without the structural constraint on Q. Then,
we can choose a full matrix

Or =—(A" + YpAXy + LoCXy + YoByFy),  (23)

to eliminate the bilinear term .J,; in (9). We solve
the resultant LMI (9) with (10) to obtain block-
diagonal XY, Fp,and L.

Now, we consider a homotopy path to transform
this initial solution at A =0 to a solution at A=1.
Let M be a positive integer and consider (M+1) points
A =k/M (k=0,1,---,M)in the interval [0,1] to
generate a family of problems

HX,Y,F,L,Q,4)<0. (24)

If the problem at the k-th point is feasible, we denote
the obtained solution by (X,Y,,F;,L;,0;). Then,
we compute a solution (X;,y,Fi.,O@ky) O
et Lgr1,Ok1)  of  H(X,Y,F,L,0,%,,) <0 by
alternately solving it as LMIs with two of the five
variables being fixed as Y=Y,,L=L, or
X=X, F=F. If the family
H(X,Y,F,L,Q,4)<0, k=0,1,~ M, are all feasible
a solution of (9) and (10) is obtained at k=M (A =1).
If it is not the case, thatis, H(X,F,Y,L,Q, 4,)<0
is not feasible for some £k when we set
Y=Y, ,L=L, and when X=X,, F=F,, we
consider more points in the interval [4,,1] by
increasing M, and repeat the procedure from the
solution (X, Y, F,,L;,0p) at A= 1;.

The above idea is summarized as a computation

algorithm for a decentralized H. output feedback
controller.

of problems

Step 1: Compute block-diagonal solutions Xj, Y,
Fy,Lyof (9) and (10) with J, =JL =0. If it is

- feasible, set Qp as (23). Initialize M to a certain

positive integer, and set a certain upper bound M .,
for M. Set k=0.
Step 2: Set k:=k+1 and A =k/M. Compute

block-diagonal solutions X, F, O of H(X,Y._,,
F,Li_,0,4)<0 and (10) with Y =Y, ;. If it is
not feasible, go to Step 3. If it is feasible, set
Xy =X, F,=F, and compute block-diagonal
solutions Y, L, O of H(X,,Y,F,,L,0,4)<0
and (10) with X =X, . Then, set ¥, =Y, L, =L,
Q) =0, and go to Step 5.

Step 3: Compute block-diagonal solutions
Y,L, QO of H(X,_,Y,F_,L,0,4)<0 and (10)
with X = X, _, . If it is not feasible, go to Step 4. If it
is feasible, set ¥, =Y, L, =L, and compute block-
diagonal solutions X, F, Q of H(X,Y,,F,L;,Q,
A)<0 and (10) with Y=Y,. Then, set
X=X, F,=F,0,= 0, and go to Step 5.

Step 4: Set M : = 2M under the constraint
M <My 5 set Xpgny = X1, Yooy =Yt
Foe1y = Fr—1> Lok-1y =Li—y, k:=2(k-1) and go to

Step 2. If we cannot increase M any more, we
conclude that this algorithm does not converge.

Step S: If k<M, go to Step 2. If &=M, the obtained
matrices X,;,Yyr, Far, Ly, and Qy, are solutions of

(9) and (10).
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Step 6: Compute block-diagonal matrices U and V'
such that yyT™=7-Xx,Y, and define the

coefficient matrices of a decentralized H,, controller as
A4,=v"'0y

Remark 1: At each of Steps 2 and 3, we suggest
solving two LMIs obtained by fixing some of the
variables in BMI (22). It is theoretically not necessary
to deal with the second one, but according to authors’
experiences, it improves the convergence of the
algorithm.

Remark 2: In Step 4, we may simply set M : = 2M,
/=0, and go back to Step 2. This means that we
compute a different homotopy path from the
beginning.

-T -1 -T
U ’BC:V LM’ CC:FMU .

5. ROBUST CONTROL FOR UNCERTAIN
CASE

We now consider the interconnected system (1)
with uncertainties 54, and 6B, of the form (2). A

robust decentralized H,, controller is given as follows.

Theorem 2: For a given constant y >0 , the
uncertain system (1) is robustly stabilizable with the
disturbance attenuation level y by a decentralized
controller (6), if there exist positive definite block-
diagonal matrices X, Y, block- diagonal matrices

, Q, and a positive constant & as solutions to
the inequalities

T(X,Y,F,L,Q,¢)=

Ji I B, xcl +F'pf
Joy I YB, + LD, rcl
B BV +Dy LT 1 0

CX +D,F cy 0 1

<0, 25)

{X i} >0, (26)
I Y
where

Jj = AX + %4" + B,F + FTB] + ¢EE"
+ & {(XG] + FTG) (G X + Gy F),

Joy = A" + YAX + LC,X + YB,F +Q + 6YEE" @7
+&7 GG X + GyF),

Joy =VA+ ATV +LCy, + CJ LT + sYEE'Y
+&7 6l G, '

and the sizes of submatrices in the block-diagonal
matrices are compatible with the dimensions of the

state, input, and output vectors of subsystems. Then,
coefficient matrices of a robust decentralized H
output feedback controller (6) are given by

) 51377 - 517 ST
A, =v'oUu ", B. =V 'L, c,=FU", (28)

where the matrices U and ¥ are block-diagonal
and determined by the equation

oVt =1-XY. (29)

Proof: From Theorem 1, we note that if a matrix
inequality, which is similar to (9), but contains
uncertain matrices 34; and oOB,; in the upper left

2x2 blocks, has a solution with (10) independently of
the uncertainties, then the obtained controller is robust.
Based on Lemma 2, the uncertain term satisfies

{5/1)? + X64T + 5By F + FToB]

(AT + YoAX + Y6ByF)T
SAT + Y 54X + )7(5232]?

Yod+64TY

_ L;EE}A[GI)N(+G2F GI]{)N(GlT ;fTG?T}AT[ET ET7]

< {fi;j'[ET ET?:|+ gi{iGlT ngGzT}[GI)?JerF Gl]
|

(30)
and we can conclude that (25) and (26) give such a
robust solution. 0

6. A SOLUTION ALGORISM FOR
UNCERTAIN CASE

To compute a solution of the matrix inequalities
(25) and (26), we again employ a homotopy method
in a different way. For this purpose we ﬁrst

—T()??ﬁf@)ﬂ()??ﬁlég) GD
where
jull Ji;r21 00
R R T ELO.e | T S 00
0 0 00
0 0 00 (32)

T a1 = €EE + s N(XG + FTG) (G X + G,F),

T o1 = 6YEET + &7 'GJ (GX + GyF),

J .y = eYEE'Y + £7'G/'G,.

We introduce a real number Ae[0,1] and define
the matrix function
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~ o~ o~ o~ ~ o~ o e A

(33)

(34)
and the problem of finding a solution to (25) is
embedded in the parametrized family of problems

~ o~ e e

HX,F,Y,L,0,6,1)<0, Ae[0]]. (35)

To solve (35) from A=0 to A=1, we apply the

Schur complement and consider two matrix
inequalities shown as
H(X,Y,F,L,0,6,2) =
i 5 7T
Ju J21 B
J21 J22 YBI+LD21
B! BY + DLLT -
C, X + D\, F CY 0
| G\X +G,F G 0
XCF +FTDY,  XGT +FTGY |
rct Gl
0 0 <0, (36)
-4 0
0 el

where
Ty =AX +XA" +B,F+F "B + £AEE",
Ty = AT +YAX +LCy X +YByF + Q+AYEE T,
Ty =YA+ ATY +LCy +CJ LT +6AYEE"Y,

€0
and
Hy(X,Y,F,L,0,6,2)=
W W
B’ B'Y + D) LT A
CX + D, F oY 0
G X + G, F G, 0
¥cT+F'pt, E |
rcl YE
0 0 <0, (38)
- 0
0 —eay ]
where

jll =AX+)ZAT +Bzﬁ'+ﬁTB2T
+ &\ MXG! + FTGI )G X +G,F),

Jyy = AT + YAX + LC,X + VByF + (39)
+& ' AG (G, X + G, F),

Jyy =¥A+ ATY + LC, + C3 LT +67'2G] G,.

Both inequalities (36) and (38) are equivalent to (35).

We note that if we fix the variables ¥ and L, (36)
becomes an LMI in X, F, O and &. Also, if we
fix the variables X and F, (38) becomes an LMI in
Y, I, O and &', We solve (35) and (26)
increasing A gradually by computing such LMlIs
alternately.

We note also that the solution to (35) and (26) with
A=0 is the same as the solution to (9) and (10).
Therefore, we choose the solution of the nominal case
as the initial values Xg,Y,Fy,Lyin the homotopy

method for the uncertain case.
We formulate this idea in an algorithm as follows.

Step 1: Compute block-diagonal solutions XY,
F,L of (9) and (10) using the algorithm given in
Section 4, which we denote by }0,)70,1?0,20 .
Initialize M to a certain positive integer, and set a
certain upper bound M. for M. Setk=0.

Step 2: Set k:=k+1 and A, =k/M. Compute
block-diagonal solutions X,F ,Q and a positive
number & of ﬁl()?,fk_l,l?,fk_l,é,g,/lk)<0
and (26) with ¥ =¥,_,. If it is not feasible, go to
Step 3. If it is feasible, set )?k :)?,Fk=ﬁ, and
compute block-diagonal solutions Y,L,0 and a
positive number &' of I—NIZ()N(k,I?,ﬁk,Z,Q,g*I,
Ar)<0 and (26) with X = X,. Then, setfk =Y,
Zk =T, ék =(, and go to Step 5.

Step 3: Compute
Y,L, O and a
Hy(X .Y, Fo_,L,0,6 ", 44)<0 and (26) with
X = )N(k_] . If it is not feasible, go to Step 4. If it is

block-diagonal  solutions

positive  number el of

feasible, set )7,( =Y , Zk :Z, and compute block-
diagonal solutions X,F, Q and a positive number &
of H(X,Y.F,L,0,6,4)<0 and (26) with
}7=)7,{.Then, set )?k =/?,ﬁk =F, Qk = Q, and go

to Step 5.
Step 4: Set M : = 2M under the constraint
M <Moo  set Xopgpy =Xpo1s Yoy =Y gs
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Py = Fits Ly = Ly, k2= 2(k-1) and go
to Step 2. If we cannot increase M any more, we
conclude that this algorithm does not converge.

Step 5: If k<M, go to Step 2. If k=M, the
XM,YM,ﬁM,ZM,QM, and
constant ¢ are solutions of the (25) and (26).

obtained  matrices
Step 6: Compute block-diagonal matrices U and
V such that UVT =I-X,Y, and define the
coefficient matrices of a robust decentralized H,
controller as
4, =V710,07", B, =V'L,, C =F,0T.

7. AN EXAMPLE

In this section, we present a simple example. The
interconnected system (1) we consider is composed of
two subsystems, the matrices of which are

P e R L
11_30’11_11921_17

and the uncertainty matrices are defined by

0.2

0.1
E2 = 0 3 5 G12 =[004 —002] N G22 :'—01

We specify the disturbance attenuation level as
y=8.75.

We consider the first stage of the solution method, that
is, the case of no uncertainty. We obtain the initial
value for the homotopy path by relaxing the structural
constraint on @ in (9) as

696 —-595 0 0
-595 896 0 0
XO = 9
0 0 423 -0.62
0 0 -0.62 2.15

1519 -481 0 0
-481 197 0 0
Yy = ,
0 0 0.90 -0.09
0 0 -009 0.56
[-7.74 -031 0 0
F(): 3
|0 0 494 —048
(=774 0
-031 0
L0= 5
0 —494
0 —048

and compute the matrix O as follows.

42073 —453.07 -59.84 —0.57
|-12033 13427 1983 -0.07
9=l 460 512 2023 -067|

289  -3.14 211 243

Then, we compute the solutions of (9) and (10) by
using the homotopy method proposed in Section 4
with M=4 as

1128 -1044 0 0
_|-1044 1368 0 0
1.17 032
032 2.12
13.96 -430 0 0
_[-430 176 0 0
110 -0.08(
-0.08 0.56
~ 0 -8.75 0 0
- 0 0 -0.0050 —8.76}
[ -8.70 0
- -0.0145 0 ’
0 -8.74
|0 0.0003
74144 -78922 0 0
21324 23156 0 0
2= 0 1156 998/
|0 0 045 5.72
The corresponding coefficient matrices of a

decentralized H,, controller are

6210 1883.1 0 0
_|-2577 —1801 0 0
<l o 0 -379 -170/

0 0 176 564
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-8.70 0
-0.0145 0
<7l o 874/
0 0.0003
c :I:ISI.ZS 456.00 0 0 }
¢ 0 0 -31.23 91.42

The disturbance attenuation level achieved by this
controller is 8.53.

Next, we consider the second stage of the solution
method, that is, the uncertain case. Taking the above
solutions as the initial values X,¥,,F,,L,, we
compute the solution to (25) and (26) by the
homotopy method proposed in the previous section
with M=8, to obtain

1033 -927 0 0

—927 1220 0 0
1.11 034
034 2.01

13.61 -4.14 0 0
—4.14  1.69 0 0

Y= ,
0 0 1.06 -0.10
0 0 -0.10 0.6
13: -0.37 -8.16 0 0 }
0 002 -824(
—8 75 0
0
-8.75 |
—0.0001
662.37 —69247 0 0
- | -187.67 20061 0 0
0= 0 0 10.44 11.30
0 0 047 521
Then, the coefficient matrices of a robust
decentralized H,, controller are
12836 39131 0 0
- 5247 -15994 0 0
¢ 0 0 -203 220 |
.0 0 855 —1485
[-8.75 0
BC: O O B
0 -8.75
0  -0.0001
c :"3114.1 9491.0 0 0 ]
N 0 -15182 26264

The disturbance attenuation level achieved by this
controller is 8.65.

8. CONCLUSIONS

This paper has considered a robust decentralized H,
control problem for uncertain large-scale inter-
connected systems. The uncertainties are assumed to
be time-invariant, norm-bounded, and exist in
subsystems. A design method based on the bounded
real lemma and the idea of homotopy has been
developed for a dynamic output feedback controller. A
decentralized controller for the nominal system is
computed first by imposing structural constraints on
the coefficient matrices gradually. Then, the
decentralized controller is modified again gradually to
cope with the uncertainties.
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