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NEW INTERACGTION MEASURES FOR DECENTRALIZED CONTROL SYSTEMS

oMOONYONG LEE" and SUNWON PARK

Dept. of Chem. Eng., KAIST
P.0.BOX 131, Cheongryang, Seoul, Korea

*Ulsan Rescarch Center, YUKONG

We present new efficient interaction measures which can be used for control
operability analysis and control structure selection in decentralized control systems. These
measures can indicate not only the stability of decentralized control systems but also the
true closed—loop performance of the decentralized control structure. Relationships between
published measures and proposed ones are clarified. Some important characteristics of these
measures are rigorously analyzed. The significance and the uscfulness of the proposed
method have been illustrated through examples found in the literature.

2R DUCTION
ally all chemical processcs are multivariable in
natine. Tliere would be two general approaches to
: s multivariable systems, i.e. centralized control
: »ntralized control. Although the constraints on
thie ¢ wiroller structure invariably lead to performance
dewenioration when compared to the systems with
censralized  controllers, decentralized controllers have
been preferred to more complex multivariable controllers
and widely used in chemical industries because of their
significant advantages such as ease of dcsign, hardware
simplicity, improved safety and failure tolerance, high
modularity and flexibility, and decentralized tuning. One
of the most important tasks of decentralized controller
design is to decide on the control structure or pairing
problem. Thus efficient interaction measures are needed
which are capable of screening effectively for the best
control structure and providing the information of the
control-loop operability for guidelining a controller
design. The Relative Gain Array %RGA) method
{Bristol,1966) has been popular as an interaction measure
because it 18 easy to use and only requires the
information of steady state process gains. Howcver, a
number of authors pointed out its limitations. Many
techniques have been proposed to overcome these
Linitations. Nevertheless, all these techniques are limited
in their use. Desirable characteristics which an ideal
wieraction measure should have are as follows ; it can
2 nonsquare as well as square systems, it can handle
loo. unstable as well as open loop stable systems, it
ndle partially decentralized as well as fully
{ 1iized control structure, it can handle dynamic as
weil as static informations, it does not require any
quantitative information of controller, it should provide
informations on both system stability and performance, it
should be scale indepedent and simple to use. But it is
not a trivial task to develop the interaction measure
satisfying all the conditions described above, and in fact
it is still an active area of research .

The objeciive of this paper is to develop some new
interaction measures which satisfy above conditions as
many as possible )

oot

GENERAL DECENTRALIZED CONTROL SYSTEM
Let us consider the conventional decentralized
feedback system structure (Fig.1). The open loop transfer
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Fig. 1. Conventional decentralized control structure.

function matrix G(s)eC"*" with kxk block partitioning is
mt [ GGz o Gk
m2 | G21 Go2 -+ Gak

G= (1)

nk | Giki Gz -+ - Gk
n n 2 nk

1
where if m>n, then m>n; fori=1,..,k
and if m<n, then mi<n; fori=1,..,k

Then the nominal transfer fucntion G is defined by

G0 ---0
- 0 Gyp---0
3= . . . (2
0 0 --- G

Let r be the vector of setpoints for the «iosed iovp
system, u be the vector of manipulated vezbies, y be

the vector of controlled variables and d be ti ecior of
disturbances. Then r, y, d and u have been p..:itioned in
the manner such as r=(ry, ro,..., )b, y=(¥1, ¥z.-.,¥x)%

d=(d;, ds,...,dx)t, u=(uy, uz,...,ux)t . The conventional
decentralized controller K is block diagonal
nit Kll 0 -+ 0
n2| 0 Kp--- 0

(3)
nkf 0 0 -« Kyx
mi m2 mk
If we use PI controller for zero off—set at steady—state,
then the K is represented as follows
K=K.+Ki/s (4)
where K. and K; are constant block diagonal matrices

with the same structure as K
Input and output transfer functions are



u=K(I+GK) Y{r—d) (5)

y=GK(I+GK) (r—d)+d (6)
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Fig. 2. Decentralized internal model control structure.
Foi the Decentralized Internal Model Control (DIMC)
structure (Fig.2), input and output transfer functions are
u=G(I+(G~G)Gc) '(r—d) (7)
y=GG(I+(G-G)Gc) Y(z—-d)+d _(8)

By the IMC controller design strategy, G can be
factorized into two factors for a square system such as

C‘ G G where G
arising from RHP zeros or time delays. Then we can use
G:t as the DIMC controller detuned by the adjustable

represents the inherent limitations

filter F such as éc=é:1F

THE CONCEPT OF RSDM AND RDDM

Let us consider square systems. If we define the
relative sensilivity as an interaction measure to evaluate
the effect of a set point change in one subsystem on the
other subsystems, and the relative disturbance as an
..erpction measure to evaluate the effect of a
Lance in one subsystem on the manipulated
variat fev of the other subsystems. There would be two
:vpes of each Relative Sensitivity Matrix (RSM) and
Relative Disturbance Matrix (RDM). The first types are
detined by
Bs,=(8yj/ 0ri)(Ayi/ Ori)* for 4,5=1,...k (9)
1= 0,/ 8d3)( 503/ 0d) 1 for =1,k (10)
The second types are delined by

Rss;=(dys/ 0r:) " yi/ Or;) for i,7=1,...k (11)

Rd'ij=(8u;/dd;) "(8ui/ 8d;) for 4,5=1,..,k (12)
Consider asymptotic characteristics of each RSM at low
and high limiting frequency ranges in order to modify
these RSM and RDM to the forms which does not require
the controller information.

At low frequency ranges || K;;||>>1 and é,F—>I
Therefore The asymptotic Rd and Rd’ at low frequencies
{denoted by Rd and Rd’} are
;5%(;53)4. .. G

I G
- Gil(Gil)+
R

a=| T (13)
L 3RiGi 1 Gil(Gah)--- T
T I (Gi)"Gih - (GG
ey {diGy) »
LG Gl (Gp)"Gg -+ T

At high frequency ranges K¥Kc and G.F—>0
Therefore the asymptotic Rs and Rs’ at high frequencies

( denoted by Rs, Rs’) are
GioGag) L -+ kasckkg'I

G2 (Gu) E | e Goe(Gr)-
R5 - l' "L : (15)
: ) -
L ka(Gu)'1 sz(Gn)‘l- .. 1
I (G11)1Gra -+ an;“le]
- (G22)1G2 1 e (G} 1G o

Rs'= ; . . ; 16}

t_ (Gkk) 1Gi1 (Gik)'Ga- - I !

Fig.3 illustrates that Rs, Rs’, Rd and Rd’ imply ‘he irue
closed-loop performance for spec1ﬁc frequency ranges.
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Fig. 3. Comparison Rad (Rdd) with Rsd (f{d'f; o
structure (yy:x1) (y2:x2) (y3:x3) in example & .lisq,
b:Rsd, c:Rdd, d:Rdd

raining

Relative Sensitivity Difference Matrix (T:,SDM; and

Relative Disturbance Difference Matrix RDDM) are
defined by
Rsd=Rs;e01~RSnoguina1=Rs—I 17

Rsd’=RS"rea1— RS nonina1=Rs—1 18
Rdd= Rdreal*Rdnomuml— d-1 19
Rdd’= Rd,r(dl-Rd noming Ll—Rd"‘I

Therefore it is clear that RSDM(RDDM) dcscrlbes the
difference  between relative sensitivity (relative
disturbance) of real system and that of nominal(i.e.
interaction {ree) system. Furthermore the {following

r‘elatnonshl_ps are established -
Rsd=(G-G)G (21)
Rsd’=G-{(G-G) (22)
Rdd=G-(T 1)1 (23)
RAd'=(G~T)1G T (24)
where (G -

- 1) means diag{(G"),y,.- ,SG ik}
For a system without interactions all RSDM :ad RDOM
are null matrices. Norms of RSDM and RD™M incresse
as the system deviates from a non—interacting <ysier:,
Relationships between RSDM and perturbaii »
If we interpret a real plant G as the pert:.
from a nominal system by off—diagonal i

Lk Lriis
(Fig.4), then the real plant G would be represenicd with
common perturbations as follows

836 G=G+A, _ (25)



G=(I+A,)G (26)

G=G(I+Ay) (27)
From Eq.26—27 one can observe the relationships such as

A, =Rsd and A,'=Rsd’. These perturbations have clear
physical meanings and useful properties for stability.
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Fig. 4. Rearranged transfer functions with various
perturbations.

Froperties of RSDM and RDDM.

Property 1. If the transfer matrix is a (block) diagonal
matrix, then

[|Rsd]|=[|Rsd’|| =|| Rdd]|=||Radd]|| =|| Rdd’|| =|| Radd"||=0.
Property 2. I}sd, }{dd’ and ‘Radd’ are input scale

independent. Rsd’,Rdd and Radd are output scale
independent.

Property 3. If the transfer matrix is 2x2 block partitioned
matrix, then de:—}{dd’ and Rsd’=—~Rdd. therefore

| Rsd||=||[Rdd’}| and ||Rsd"||=||Rdd]|
Proper}y 4. 1f &he transfer matrix is a triangular matrix,

then ||Rdd||=||Radd]| and [[Rdd[|=(Radd"[.

RELATIONSHIPS WITH STABILITY

Let us consider the conventional decentralized control
system. Postlethwaite and Foo (1985) derived useful
Theorems for robust stability. An application of their
work to the conventional decentralized control structure
yields the following theorem.

Theorem 1. Assume that i) G and G have the same
number of poles in Dy and ii) nominal closed loop system

I is stable, then the perturbed closed leop systermn H is

stable if p(AH)<1. vseDy
where Dy denotes direct Nyquist D—contour and p(.)
denotes the spectral radius.

If a real plant can be expressed as a block diagonal

matrix (i.e. G=G ), then Ap=0. Therefore the perturbed
closed loop system H is always stable provided that the
decentralized controller is tuned so that each nominal
closed loop system is stable. The more the real plant
resembles a block diagonal matrix, the more A,

resembles a null matrix. Therefore, for given H the range

in which p(AoH) be kept as small as possible should be
large. On the other hand, the more the real plant
deviates from the block diagonal matrix, the more it is

difficult for p(AIT) to be kept as small as suificient to
maintain stability of the overall plant. Nwokah (1986)
detived a tight criterion for robust stability by using M
matrix theory. The following Corollaries are developed
based on his work. .-
Corollary 1—1. Let’s define matrices ReRkxk, BeRkxk and
CeRkxk such as

Re={rs;} where ri;=)(AoH)s;) 837

B=—'{bij} where bij—'—-‘“'_Aoij”

C={cyj} where cij=||Hy|
Then under the same assumptions in Theorem 1, the
perturbed closed loop system is stable if p(BC)<1. vs€ Dy
Corollary 1-2. Under the same assumptions in Theorem
1, the perturbed closed loop system is stable if
J1TEs|| <p-}(B) vi, vs€Dy

From Corollary 1-2 it can be known tHat the increase

of p(B) causes decrease of stability boundary (1! Small

stability boundary |{H;]| means poor control perioraiance.
So the deterioration of control performance can ke krown
from suggested interaction measures.

According to Morari (1989), a plant is Dccentralized
Integral Controllable (DIC) if there exists 2 diagonal
controller with integral action such that closed loop
system is stable and the gains of any subset of loops can
be reduced to zero without affecting the closed loop
stability. The tight sufficient condition for DIC is
Corollary 1-3. For the square system under assumptions
in Theorem 1, the sufficient condition for DIC is as
2(B{0))<1 vs€Dy
Corollary 1-4. For the square system under assumptions
in Theorem 1 when we realize perfect control for each one
of the nominal loops, the sufficient condition for overall
stability is as
o{Bo)<l vseDg

According to the Small Gain Theorem, the stability of
the DIMC structure is guaranteed

if p(Aoé,F)<1 vseDg (28)
By the application of M matrix theorem, the following

stability criterion of explicite type is obtained.
[[Fill<p(B) vi, vs€Dg {29}

Eztension to nonsquare systems.
The DIMC controller for a nonsquare svsicm with

more inputs than outputs is designed as G.=G*F where

G* denotes the pseudoinverse of G.

Asymptotic RDDM at low frequencies are
RAd’s;;=((Gi) (GG H(Gii) (GG =81 (30)
Asymptotic RSDM at high frequencies are
Rsdij=Gyj(Gjj) 6! (31)

SUGGESTED PAIRING AND DESIGN RULE.
The suggested pairing and design rule is as follows :

i) Make a frequency plot of ||ksd|] and jRdd"}| ( ]iflsd’”

and ||Rdd}} ) for every pairing cases.
ii) Select the pairing case with the smallest value of

IRsd|| at high frequencies and ||f{dd’l| at low frequencies

$ [Rsd’ff at high {requencies and |[Rdd]] at low
requencies ) Ideally the value less than one is desirable.
ili) Check the stability characteristics and performance
deterioration by p(B) over the whole frequency range.

iv) If there exists no desirable case in fully decentralized
structures, then consider the block partitioning and
repeat step i) —iii).

v) If there exists no desirable case in purtially
decentralized structures either, then consider a deconpier
or a fully centralized multivariable controllc:.

Note that if only the steady-state information is
available, then we can use ||Rdd’(0)}} and ||Rdd(0)]] and
check DIC from p(B(0)).

EXAMPLES
We present some examples to illustrate the proposed
method. Dynamic simulation is performed to confirm our



predictions. The DIMC controller with the second order
filter is used for an equal base comparison among
candidate pairing structures.

Example 1. This example consists of a distillation
column with side streams presented by Ray(1981). The
only feasible pairing structure is the diagonal (block
diagonal) pairing. For the case with only steady state
information availabe, according to our method, a severe
interaction effect at steady—state is expected due to high

[Rdd(0)|| and [[RAd’(0)|| although the system is DIC
since p(B(0))<1. So our method suggests that there exist
no proper pairing case both in the fully decentralized
system and the partially decentralized system. For the
case with dynamic information available, Our method
suggests that all pairing cases are not proper due to their

high ||Rsd||, [|Rsd’|], ||Rdd}| and ||Rdd’||. Fig. 5c— show
dynamic simulation with filter constant a=0.5.

Example 2. This example was presented originally by
Friedly (1984). For the case with only steady state
information available, according to our method, a severe
interaction effect at steady—state is expected due to high

iiRdd’(0)]} although the system is DIC since p(B(0))<1.
ror the case with dynamic information availab]e,n the

reiative sensitivitics seem very good due to low ||Rsd|)
aud J|Rsd’}|, but relative disturbances are bad due to high

IRdd’]|. Thus our method suggests that there exist no
proper pairing. One can observe the large difference

between ||Rdd|| and |[Rdd’}l. This means the large
different dynamic characteristics between each loops in
that pairing structure. Fig. 6b-< show dynamic
simulation with filter constant a=0.5.

Example 3. This is presented to illustrate the dynamic
interaction effect(Gagnepain and Seborg,1982).
Some plausible pairing structures after a coarse screening
are as follows.
a: yl:X3)(y2:x22(y3:x1)

)’1,)’27X2,X3) 31Xy
e (yexi)(y2x3)(yaxa

¥Y2,¥3:%X2,%3)(yrx)
For the case with only steady state information availabe,
our method recommand the pairing c. For the case with
dyramic information available, we can know that the
closed loop performances of both a and ¢ are not bad in

Law Jteguency since each [|Rdd|| and |Rdd|] has similar
‘. vaides. But for high frequency the structure ¢ and d
show Jarge dynamic interaction effect due to their high

IRsd] and ||Rsd’||. Therefore the proposed method
recommends the structure a and b because of their good
dynamic interaction. Fig. 7c—d show dynamic simulations
for the pairing a and b with filter constant @=0.05.

Example 4. This is an example for a non—square system
presented by Reeves and Arkun (1989).

From Fig. 8a it is clear that the pairing (yy:x;,xz) (y2:x3)
is the best pairing structure for both high and low

frequencies because ||[Rsd|| and [|Rsd’]| show the most
desirable feature among all other structures. Fig. 8b—c
show dynamic simulations for that pairing case with filter
constant a=0.05.

CONCTLUSIONS

New interaction wieasures have been proposed by
introducing the concept of Relative Sensitivity Diffcrence
Matrix (RSDM) and Relative Disturbance Difference
Matrix (RDDM). It has been shown that without any

predict the true closed—loop performance ny usiny g.he
asymptotic characteristics of these matrices ai specific
frequency ranges. Several useful properties for control
loop operability have been obtained from two types of
RSDM and RDDM. It has been shown that there exist
close relationships between the proposed interaction
measure matrices and multiplicattve perturbations. Using
this fact, tight stability conditions of explicit type have
been driven from robust stability tpeorems. The
suggested method can be used to predict not only the
stability of decentralized systems but also the
performance degradation due to decentralized control. A
guideline for pairing and design of decentralized control
system has been suggested. Through some illustrative

examples we confirmed the reliability of the proposed
method.
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Fig. 5a. ﬁsd, f{dd' arjd 2(B) of various pairing structures
in example 1. a: Rdd' of (y,:xl)h(yg:xz) (ys:x3), b:
Rsd=Rdd" of (y1,y2:x1,x3) (ys:x3), c: Rad of (yy:x¢) (y2:xq)
(va:xs), d: Rsd=Rdd' of (yix1) (yaysxa,x3), e po(B) of

quantitative information of the controller it is possible t0 838 every pairing case
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Fig. 5b. ﬁsd'z }:{dd of various pairing structures in
example 1. a: Kdd of (y,:)&,) (y2:x2) (y3:x3), b: Red'=Rdd
of (ylzxA;) (y2,¥3:x3,%3), c: Red' of (y1:x1) (ya:xa) (v3:xs), d:
Rad'=Rdd of (y;,y5:x1,x3) (y3:x3).
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Fig. bc. Output responses for the pairing (yi:xy) (ya:xa)
{¥3:x3) in example 1. by the simultaneous setpoint change
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Fig. 5d. Output responses for the pairing (yix1)
(y3,¥3:X3,x3) by the simultaneous setpoint change ry:l.,
79:0.8, ¢3:0.6 in example 1.
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Fig. 5e. Output responses for the pairing (y1,y2:%1,X2)
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Fig. 6a. ﬁsd, ﬁdd', ﬁsd', Rdd and p(B) of the pairing
structure (yrx1) (y2:xa) in example 2. a: Red=Rdd', b:
Rsd'=Rdd, c: p(B).
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Fig. 6c. Manipulated variable and output responses for
the pairing (yy:x;) (y3:xg) by the step disturbance in
example 2. a: dy:0.3, b: d3:0.3
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Fig. 6b. Output responses for the pairing (y;:x;) (y2:xq)
by the simuitaneous setpoint change ry:l., rg:0.8 in
example 2.

(v3:x3) by the simultaneous setpoint change r;:l., r3:0.8, 839

13:0.6 1n example 1.
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Fig. 7a. ﬁ.sd, ﬁdd', ﬁsd’ a{ld ﬁ{ld of various pairing
structures in example 3. a: Rsd=Rad' of (yy:xs) (ya:x3)
(ysx1), b: Rdd=Rdd' of (yixs) (vaxa) (ysxi), c

Rsd=Red' of (yrx)) (yaxs) (ysixa), d: Rdd=Rdd' of
(yexy) (yaixs) (yaixa).
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fig. 7o. Rsd=Rdd'=Rsd'=Rdd of various pairin
structures in example 3. a: (y1,y2:x2,x3) (ya:xq) or (y;:x3§
(y2.y3x1.x3), b: (yrxi) (Y2.Ya:x2.xs3 or 3yn.s'z:xn,xs
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Fig. Tc. Output responses for the pairing (y1:x3) (ya2:xa)
{yg:5;) by the setpoint change ry:1. in example 3.
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Fig. 7d. Output responses for the pairing (y1,y2:x2,X3)
(y3:x1) by the setpoint change ry:1. in example 3.
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Fig. 8a. Rsd=Rdd' of various pairing structures in

example 4. a: (y2:x(,x2) (yi:x3), b (yexxs) {yzxg), ¢
gYﬁx? (ya:xy,xg), d: (gxixo (yaxa,xs), e {yixaxs)
yxa), £ (y1:x1,x32) (ya:xa).
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Fig. 8b. Output responses for the pairing (yr:x1,x2)
(y2:x3) by the setpoint change in example 4.



